![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: ifpbi23d 1080 3anbi12d 1437 3anbi13d 1438 3anbi23d 1439 3anbi1d 1440 3anbi2d 1441 3anbi3d 1442 nfald2 2453 exdistrf 2455 sb6x 2472 axc16gALT 2498 raleqOLD 3348 rexeqOLD 3349 vtoclegft 3601 ralxpxfr2d 3659 rr19.3v 3680 rr19.28v 3681 rabtru 3705 moeq3 3734 euxfr2w 3742 euxfr2 3744 reuxfrd 3770 dfif3 4562 sseliALT 5327 copsexgw 5510 copsexg 5511 soeq1 5629 frd 5656 soinxp 5781 idrefALT 6143 ordtri3or 6427 nfriotadw 7412 oprabidw 7479 ov6g 7614 ovg 7615 sorpssi 7764 dfxp3 8102 fsplit 8158 frxp3 8192 xpord3inddlem 8195 aceq1 10186 aceq2 10188 axpowndlem4 10669 axpownd 10670 ltsopr 11101 creur 12287 creui 12288 o1fsum 15861 sumodd 16436 sadfval 16498 sadcp1 16501 pceu 16893 vdwlem12 17039 sgrp2rid2ex 18962 gsumval3eu 19946 lss1d 20984 nrmr0reg 23778 stdbdxmet 24549 xrsxmet 24850 cmetcaulem 25341 bcth3 25384 iundisj2 25603 ulmdvlem3 26463 ulmdv 26464 dchrvmasumlem2 27560 colrot1 28585 lnrot1 28649 lnrot2 28650 wlkson 29692 trlsfval 29731 pthsfval 29757 spthsfval 29758 clwlks 29808 crcts 29824 cycls 29825 3cyclfrgrrn1 30317 frgrwopreg 30355 reuxfrdf 32519 iundisj2f 32612 iundisj2fi 32802 ordtprsuni 33865 pmeasmono 34289 erdszelem9 35167 satfv1fvfmla1 35391 opnrebl2 36287 wl-ifpimpr 37432 wl-df-3xor 37434 wl-ax11-lem9 37547 ax12fromc15 38861 axc16g-o 38890 ax12indalem 38901 ax12inda2ALT 38902 dihopelvalcpre 41205 lpolconN 41444 dvrelog2b 42023 isprimroot 42050 aks6d1c2p2 42076 hashscontpow 42079 rspcsbnea 42088 aks6d1c6lem3 42129 fsuppind 42545 zindbi 42903 cnvtrucl0 43586 ismnushort 44270 e2ebind 44534 uunT1 44751 ovnval2 46466 ovnval2b 46473 hoiqssbl 46546 6gbe 47645 8gbe 47647 isgrim 47752 usgrexmpl1tri 47840 |
Copyright terms: Public domain | W3C validator |