Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ifpbi23d 1078 3anbi12d 1435 3anbi13d 1436 3anbi23d 1437 3anbi1d 1438 3anbi2d 1439 3anbi3d 1440 nfald2 2445 exdistrf 2447 sb6x 2464 axc16gALT 2494 raleq 3333 rexeq 3334 ralxpxfr2d 3568 rr19.3v 3591 rr19.28v 3592 rabtru 3614 moeq3 3642 euxfr2w 3650 euxfr2 3652 reuxfrd 3678 dfif3 4470 sseliALT 5228 copsexgw 5398 copsexg 5399 soeq1 5515 frd 5539 soinxp 5659 idrefALT 6007 ordtri3or 6283 nfriotadw 7220 oprabidw 7286 ov6g 7414 ovg 7415 sorpssi 7560 dfxp3 7874 fsplit 7928 aceq1 9804 aceq2 9806 axpowndlem4 10287 axpownd 10288 ltsopr 10719 creur 11897 creui 11898 o1fsum 15453 sumodd 16025 sadfval 16087 sadcp1 16090 pceu 16475 vdwlem12 16621 sgrp2rid2ex 18481 gsumval3eu 19420 lss1d 20140 nrmr0reg 22808 stdbdxmet 23577 xrsxmet 23878 cmetcaulem 24357 bcth3 24400 iundisj2 24618 ulmdvlem3 25466 ulmdv 25467 dchrvmasumlem2 26551 colrot1 26824 lnrot1 26888 lnrot2 26889 wlkson 27926 trlsfval 27965 pthsfval 27990 spthsfval 27991 clwlks 28041 crcts 28057 cycls 28058 3cyclfrgrrn1 28550 frgrwopreg 28588 reuxfrdf 30740 iundisj2f 30830 iundisj2fi 31020 ordtprsuni 31771 pmeasmono 32191 erdszelem9 33061 satfv1fvfmla1 33285 xpord3ind 33727 opnrebl2 34437 wl-ifpimpr 35564 wl-df-3xor 35566 wl-ax11-lem9 35671 ax12fromc15 36846 axc16g-o 36875 ax12indalem 36886 ax12inda2ALT 36887 dihopelvalcpre 39189 lpolconN 39428 dvrelog2b 40002 sticksstones11 40040 fsuppind 40202 zindbi 40684 cnvtrucl0 41121 ismnushort 41808 e2ebind 42072 uunT1 42289 ovnval2 43973 ovnval2b 43980 hoiqssbl 44053 6gbe 45111 8gbe 45113 |
Copyright terms: Public domain | W3C validator |