| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2447 exdistrf 2449 sb6x 2466 axc16gALT 2492 raleqOLD 3307 rexeqOLD 3308 vtoclegft 3540 ralxpxfr2d 3597 rr19.3v 3618 rr19.28v 3619 rabtru 3641 moeq3 3667 euxfr2w 3675 euxfr2 3677 reuxfrd 3703 vn0 4294 eq0 4299 ab0orv 4332 dfif3 4491 sseliALT 5251 copsexgw 5435 copsexg 5436 soeq1 5550 frd 5578 soinxp 5703 idrefALT 6066 ordtri3or 6345 nfriotadw 7319 oprabidw 7385 ov6g 7518 ovg 7519 sorpssi 7670 dfxp3 8001 fsplit 8055 frxp3 8089 xpord3inddlem 8092 aceq1 10017 aceq2 10019 axpowndlem4 10500 axpownd 10501 ltsopr 10932 creur 12128 creui 12129 o1fsum 15724 sumodd 16303 sadfval 16367 sadcp1 16370 pceu 16762 vdwlem12 16908 sgrp2rid2ex 18839 gsumval3eu 19820 lss1d 20900 nrmr0reg 23667 stdbdxmet 24433 xrsxmet 24728 cmetcaulem 25218 bcth3 25261 iundisj2 25480 ulmdvlem3 26341 ulmdv 26342 dchrvmasumlem2 27439 colrot1 28540 lnrot1 28604 lnrot2 28605 wlkson 29637 trlsfval 29676 pthsfval 29701 spthsfval 29702 clwlks 29754 crcts 29770 cycls 29771 3cyclfrgrrn1 30269 frgrwopreg 30307 reuxfrdf 32474 iundisj2f 32574 iundisj2fi 32786 constrcbvlem 33791 ordtprsuni 33955 pmeasmono 34360 erdszelem9 35266 satfv1fvfmla1 35490 opnrebl2 36388 wl-ifpimpr 37533 wl-df-3xor 37535 ax12fromc15 39027 axc16g-o 39056 ax12indalem 39067 ax12inda2ALT 39068 dihopelvalcpre 41370 lpolconN 41609 dvrelog2b 42182 isprimroot 42209 aks6d1c2p2 42235 hashscontpow 42238 rspcsbnea 42247 aks6d1c6lem3 42288 fsuppind 42711 zindbi 43066 cnvtrucl0 43744 ismnushort 44421 e2ebind 44683 uunT1 44899 ovnval2 46670 ovnval2b 46677 hoiqssbl 46750 6gbe 47898 8gbe 47900 isgrim 48009 usgrexmpl1tri 48152 gpgov 48169 gpg3kgrtriex 48216 |
| Copyright terms: Public domain | W3C validator |