| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2449 exdistrf 2451 sb6x 2468 axc16gALT 2494 raleqOLD 3319 rexeqOLD 3320 vtoclegft 3567 ralxpxfr2d 3625 rr19.3v 3646 rr19.28v 3647 rabtru 3668 moeq3 3695 euxfr2w 3703 euxfr2 3705 reuxfrd 3731 dfif3 4515 sseliALT 5279 copsexgw 5465 copsexg 5466 soeq1 5582 frd 5610 soinxp 5736 idrefALT 6100 ordtri3or 6384 nfriotadw 7370 oprabidw 7436 ov6g 7571 ovg 7572 sorpssi 7723 dfxp3 8060 fsplit 8116 frxp3 8150 xpord3inddlem 8153 aceq1 10131 aceq2 10133 axpowndlem4 10614 axpownd 10615 ltsopr 11046 creur 12234 creui 12235 o1fsum 15829 sumodd 16407 sadfval 16471 sadcp1 16474 pceu 16866 vdwlem12 17012 sgrp2rid2ex 18905 gsumval3eu 19885 lss1d 20920 nrmr0reg 23687 stdbdxmet 24454 xrsxmet 24749 cmetcaulem 25240 bcth3 25283 iundisj2 25502 ulmdvlem3 26363 ulmdv 26364 dchrvmasumlem2 27461 colrot1 28538 lnrot1 28602 lnrot2 28603 wlkson 29636 trlsfval 29675 pthsfval 29701 spthsfval 29702 clwlks 29754 crcts 29770 cycls 29771 3cyclfrgrrn1 30266 frgrwopreg 30304 reuxfrdf 32472 iundisj2f 32571 iundisj2fi 32774 constrcbvlem 33789 ordtprsuni 33950 pmeasmono 34356 erdszelem9 35221 satfv1fvfmla1 35445 opnrebl2 36339 wl-ifpimpr 37484 wl-df-3xor 37486 wl-ax11-lem9 37611 ax12fromc15 38923 axc16g-o 38952 ax12indalem 38963 ax12inda2ALT 38964 dihopelvalcpre 41267 lpolconN 41506 dvrelog2b 42079 isprimroot 42106 aks6d1c2p2 42132 hashscontpow 42135 rspcsbnea 42144 aks6d1c6lem3 42185 fsuppind 42613 zindbi 42970 cnvtrucl0 43648 ismnushort 44325 e2ebind 44588 uunT1 44804 ovnval2 46574 ovnval2b 46581 hoiqssbl 46654 6gbe 47785 8gbe 47787 isgrim 47895 usgrexmpl1tri 48029 gpgov 48046 gpg3kgrtriex 48091 |
| Copyright terms: Public domain | W3C validator |