| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2444 exdistrf 2446 sb6x 2463 axc16gALT 2489 raleqOLD 3315 rexeqOLD 3316 vtoclegft 3557 ralxpxfr2d 3615 rr19.3v 3636 rr19.28v 3637 rabtru 3659 moeq3 3686 euxfr2w 3694 euxfr2 3696 reuxfrd 3722 dfif3 4506 sseliALT 5267 copsexgw 5453 copsexg 5454 soeq1 5570 frd 5598 soinxp 5723 idrefALT 6087 ordtri3or 6367 nfriotadw 7355 oprabidw 7421 ov6g 7556 ovg 7557 sorpssi 7708 dfxp3 8043 fsplit 8099 frxp3 8133 xpord3inddlem 8136 aceq1 10077 aceq2 10079 axpowndlem4 10560 axpownd 10561 ltsopr 10992 creur 12187 creui 12188 o1fsum 15786 sumodd 16365 sadfval 16429 sadcp1 16432 pceu 16824 vdwlem12 16970 sgrp2rid2ex 18861 gsumval3eu 19841 lss1d 20876 nrmr0reg 23643 stdbdxmet 24410 xrsxmet 24705 cmetcaulem 25195 bcth3 25238 iundisj2 25457 ulmdvlem3 26318 ulmdv 26319 dchrvmasumlem2 27416 colrot1 28493 lnrot1 28557 lnrot2 28558 wlkson 29591 trlsfval 29630 pthsfval 29656 spthsfval 29657 clwlks 29709 crcts 29725 cycls 29726 3cyclfrgrrn1 30221 frgrwopreg 30259 reuxfrdf 32427 iundisj2f 32526 iundisj2fi 32727 constrcbvlem 33752 ordtprsuni 33916 pmeasmono 34322 erdszelem9 35193 satfv1fvfmla1 35417 opnrebl2 36316 wl-ifpimpr 37461 wl-df-3xor 37463 wl-ax11-lem9 37588 ax12fromc15 38905 axc16g-o 38934 ax12indalem 38945 ax12inda2ALT 38946 dihopelvalcpre 41249 lpolconN 41488 dvrelog2b 42061 isprimroot 42088 aks6d1c2p2 42114 hashscontpow 42117 rspcsbnea 42126 aks6d1c6lem3 42167 fsuppind 42585 zindbi 42942 cnvtrucl0 43620 ismnushort 44297 e2ebind 44560 uunT1 44776 ovnval2 46550 ovnval2b 46557 hoiqssbl 46630 6gbe 47776 8gbe 47778 isgrim 47886 usgrexmpl1tri 48020 gpgov 48037 gpg3kgrtriex 48084 |
| Copyright terms: Public domain | W3C validator |