| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2443 exdistrf 2445 sb6x 2462 axc16gALT 2488 raleqOLD 3313 rexeqOLD 3314 vtoclegft 3554 ralxpxfr2d 3612 rr19.3v 3633 rr19.28v 3634 rabtru 3656 moeq3 3683 euxfr2w 3691 euxfr2 3693 reuxfrd 3719 dfif3 4503 sseliALT 5264 copsexgw 5450 copsexg 5451 soeq1 5567 frd 5595 soinxp 5720 idrefALT 6084 ordtri3or 6364 nfriotadw 7352 oprabidw 7418 ov6g 7553 ovg 7554 sorpssi 7705 dfxp3 8040 fsplit 8096 frxp3 8130 xpord3inddlem 8133 aceq1 10070 aceq2 10072 axpowndlem4 10553 axpownd 10554 ltsopr 10985 creur 12180 creui 12181 o1fsum 15779 sumodd 16358 sadfval 16422 sadcp1 16425 pceu 16817 vdwlem12 16963 sgrp2rid2ex 18854 gsumval3eu 19834 lss1d 20869 nrmr0reg 23636 stdbdxmet 24403 xrsxmet 24698 cmetcaulem 25188 bcth3 25231 iundisj2 25450 ulmdvlem3 26311 ulmdv 26312 dchrvmasumlem2 27409 colrot1 28486 lnrot1 28550 lnrot2 28551 wlkson 29584 trlsfval 29623 pthsfval 29649 spthsfval 29650 clwlks 29702 crcts 29718 cycls 29719 3cyclfrgrrn1 30214 frgrwopreg 30252 reuxfrdf 32420 iundisj2f 32519 iundisj2fi 32720 constrcbvlem 33745 ordtprsuni 33909 pmeasmono 34315 erdszelem9 35186 satfv1fvfmla1 35410 opnrebl2 36309 wl-ifpimpr 37454 wl-df-3xor 37456 wl-ax11-lem9 37581 ax12fromc15 38898 axc16g-o 38927 ax12indalem 38938 ax12inda2ALT 38939 dihopelvalcpre 41242 lpolconN 41481 dvrelog2b 42054 isprimroot 42081 aks6d1c2p2 42107 hashscontpow 42110 rspcsbnea 42119 aks6d1c6lem3 42160 fsuppind 42578 zindbi 42935 cnvtrucl0 43613 ismnushort 44290 e2ebind 44553 uunT1 44769 ovnval2 46543 ovnval2b 46550 hoiqssbl 46623 6gbe 47772 8gbe 47774 isgrim 47882 usgrexmpl1tri 48016 gpgov 48033 gpg3kgrtriex 48080 |
| Copyright terms: Public domain | W3C validator |