![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: ifpbi23d 1079 3anbi12d 1436 3anbi13d 1437 3anbi23d 1438 3anbi1d 1439 3anbi2d 1440 3anbi3d 1441 nfald2 2447 exdistrf 2449 sb6x 2466 axc16gALT 2492 raleqOLD 3337 rexeqOLD 3338 vtoclegft 3587 ralxpxfr2d 3645 rr19.3v 3666 rr19.28v 3667 rabtru 3691 moeq3 3720 euxfr2w 3728 euxfr2 3730 reuxfrd 3756 dfif3 4544 sseliALT 5314 copsexgw 5500 copsexg 5501 soeq1 5617 frd 5644 soinxp 5769 idrefALT 6133 ordtri3or 6417 nfriotadw 7395 oprabidw 7461 ov6g 7596 ovg 7597 sorpssi 7747 dfxp3 8084 fsplit 8140 frxp3 8174 xpord3inddlem 8177 aceq1 10154 aceq2 10156 axpowndlem4 10637 axpownd 10638 ltsopr 11069 creur 12257 creui 12258 o1fsum 15845 sumodd 16421 sadfval 16485 sadcp1 16488 pceu 16879 vdwlem12 17025 sgrp2rid2ex 18952 gsumval3eu 19936 lss1d 20978 nrmr0reg 23772 stdbdxmet 24543 xrsxmet 24844 cmetcaulem 25335 bcth3 25378 iundisj2 25597 ulmdvlem3 26459 ulmdv 26460 dchrvmasumlem2 27556 colrot1 28581 lnrot1 28645 lnrot2 28646 wlkson 29688 trlsfval 29727 pthsfval 29753 spthsfval 29754 clwlks 29804 crcts 29820 cycls 29821 3cyclfrgrrn1 30313 frgrwopreg 30351 reuxfrdf 32518 iundisj2f 32609 iundisj2fi 32804 ordtprsuni 33879 pmeasmono 34305 erdszelem9 35183 satfv1fvfmla1 35407 opnrebl2 36303 wl-ifpimpr 37448 wl-df-3xor 37450 wl-ax11-lem9 37573 ax12fromc15 38886 axc16g-o 38915 ax12indalem 38926 ax12inda2ALT 38927 dihopelvalcpre 41230 lpolconN 41469 dvrelog2b 42047 isprimroot 42074 aks6d1c2p2 42100 hashscontpow 42103 rspcsbnea 42112 aks6d1c6lem3 42153 fsuppind 42576 zindbi 42934 cnvtrucl0 43613 ismnushort 44296 e2ebind 44560 uunT1 44777 ovnval2 46500 ovnval2b 46507 hoiqssbl 46580 6gbe 47695 8gbe 47697 isgrim 47805 usgrexmpl1tri 47919 gpgov 47936 |
Copyright terms: Public domain | W3C validator |