![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ifpbi23d 1080 3anbi12d 1437 3anbi13d 1438 3anbi23d 1439 3anbi1d 1440 3anbi2d 1441 3anbi3d 1442 nfald2 2444 exdistrf 2446 sb6x 2463 axc16gALT 2489 raleqOLD 3335 rexeqOLD 3336 vtoclegft 3573 ralxpxfr2d 3633 rr19.3v 3656 rr19.28v 3657 rabtru 3679 moeq3 3707 euxfr2w 3715 euxfr2 3717 reuxfrd 3743 dfif3 4541 sseliALT 5308 copsexgw 5489 copsexg 5490 soeq1 5608 frd 5634 soinxp 5755 idrefALT 6109 ordtri3or 6393 nfriotadw 7369 oprabidw 7436 ov6g 7567 ovg 7568 sorpssi 7715 dfxp3 8043 fsplit 8099 frxp3 8133 xpord3inddlem 8136 aceq1 10108 aceq2 10110 axpowndlem4 10591 axpownd 10592 ltsopr 11023 creur 12202 creui 12203 o1fsum 15755 sumodd 16327 sadfval 16389 sadcp1 16392 pceu 16775 vdwlem12 16921 sgrp2rid2ex 18804 gsumval3eu 19766 lss1d 20566 nrmr0reg 23244 stdbdxmet 24015 xrsxmet 24316 cmetcaulem 24796 bcth3 24839 iundisj2 25057 ulmdvlem3 25905 ulmdv 25906 dchrvmasumlem2 26990 colrot1 27799 lnrot1 27863 lnrot2 27864 wlkson 28902 trlsfval 28941 pthsfval 28967 spthsfval 28968 clwlks 29018 crcts 29034 cycls 29035 3cyclfrgrrn1 29527 frgrwopreg 29565 reuxfrdf 31718 iundisj2f 31808 iundisj2fi 31995 ordtprsuni 32887 pmeasmono 33311 erdszelem9 34178 satfv1fvfmla1 34402 opnrebl2 35194 wl-ifpimpr 36335 wl-df-3xor 36337 wl-ax11-lem9 36443 ax12fromc15 37763 axc16g-o 37792 ax12indalem 37803 ax12inda2ALT 37804 dihopelvalcpre 40107 lpolconN 40346 dvrelog2b 40919 aks6d1c2p2 40945 sticksstones11 40960 fsuppind 41159 zindbi 41670 cnvtrucl0 42360 ismnushort 43045 e2ebind 43309 uunT1 43526 ovnval2 45247 ovnval2b 45254 hoiqssbl 45327 6gbe 46425 8gbe 46427 |
Copyright terms: Public domain | W3C validator |