Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ifpbi23d 1079 3anbi12d 1436 3anbi13d 1437 3anbi23d 1438 3anbi1d 1439 3anbi2d 1440 3anbi3d 1441 nfald2 2445 exdistrf 2447 sb6x 2464 axc16gALT 2494 raleq 3342 rexeq 3343 ralxpxfr2d 3576 rr19.3v 3598 rr19.28v 3599 rabtru 3621 moeq3 3647 euxfr2w 3655 euxfr2 3657 reuxfrd 3683 dfif3 4473 sseliALT 5233 copsexgw 5404 copsexg 5405 soeq1 5524 frd 5548 soinxp 5668 idrefALT 6018 ordtri3or 6298 nfriotadw 7240 oprabidw 7306 ov6g 7436 ovg 7437 sorpssi 7582 dfxp3 7901 fsplit 7957 aceq1 9873 aceq2 9875 axpowndlem4 10356 axpownd 10357 ltsopr 10788 creur 11967 creui 11968 o1fsum 15525 sumodd 16097 sadfval 16159 sadcp1 16162 pceu 16547 vdwlem12 16693 sgrp2rid2ex 18566 gsumval3eu 19505 lss1d 20225 nrmr0reg 22900 stdbdxmet 23671 xrsxmet 23972 cmetcaulem 24452 bcth3 24495 iundisj2 24713 ulmdvlem3 25561 ulmdv 25562 dchrvmasumlem2 26646 colrot1 26920 lnrot1 26984 lnrot2 26985 wlkson 28024 trlsfval 28063 pthsfval 28089 spthsfval 28090 clwlks 28140 crcts 28156 cycls 28157 3cyclfrgrrn1 28649 frgrwopreg 28687 reuxfrdf 30839 iundisj2f 30929 iundisj2fi 31118 ordtprsuni 31869 pmeasmono 32291 erdszelem9 33161 satfv1fvfmla1 33385 xpord3ind 33800 opnrebl2 34510 wl-ifpimpr 35637 wl-df-3xor 35639 wl-ax11-lem9 35744 ax12fromc15 36919 axc16g-o 36948 ax12indalem 36959 ax12inda2ALT 36960 dihopelvalcpre 39262 lpolconN 39501 dvrelog2b 40074 sticksstones11 40112 fsuppind 40279 zindbi 40768 cnvtrucl0 41232 ismnushort 41919 e2ebind 42183 uunT1 42400 ovnval2 44083 ovnval2b 44090 hoiqssbl 44163 6gbe 45223 8gbe 45225 |
Copyright terms: Public domain | W3C validator |