| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2445 exdistrf 2447 sb6x 2464 axc16gALT 2490 raleqOLD 3306 rexeqOLD 3307 vtoclegft 3543 ralxpxfr2d 3601 rr19.3v 3622 rr19.28v 3623 rabtru 3645 moeq3 3671 euxfr2w 3679 euxfr2 3681 reuxfrd 3707 dfif3 4490 sseliALT 5247 copsexgw 5430 copsexg 5431 soeq1 5545 frd 5573 soinxp 5698 idrefALT 6060 ordtri3or 6338 nfriotadw 7311 oprabidw 7377 ov6g 7510 ovg 7511 sorpssi 7662 dfxp3 7993 fsplit 8047 frxp3 8081 xpord3inddlem 8084 aceq1 10008 aceq2 10010 axpowndlem4 10491 axpownd 10492 ltsopr 10923 creur 12119 creui 12120 o1fsum 15720 sumodd 16299 sadfval 16363 sadcp1 16366 pceu 16758 vdwlem12 16904 sgrp2rid2ex 18835 gsumval3eu 19817 lss1d 20897 nrmr0reg 23665 stdbdxmet 24431 xrsxmet 24726 cmetcaulem 25216 bcth3 25259 iundisj2 25478 ulmdvlem3 26339 ulmdv 26340 dchrvmasumlem2 27437 colrot1 28538 lnrot1 28602 lnrot2 28603 wlkson 29634 trlsfval 29673 pthsfval 29698 spthsfval 29699 clwlks 29751 crcts 29767 cycls 29768 3cyclfrgrrn1 30263 frgrwopreg 30301 reuxfrdf 32468 iundisj2f 32568 iundisj2fi 32777 constrcbvlem 33766 ordtprsuni 33930 pmeasmono 34335 erdszelem9 35241 satfv1fvfmla1 35465 opnrebl2 36361 wl-ifpimpr 37506 wl-df-3xor 37508 wl-ax11-lem9 37633 ax12fromc15 38950 axc16g-o 38979 ax12indalem 38990 ax12inda2ALT 38991 dihopelvalcpre 41293 lpolconN 41532 dvrelog2b 42105 isprimroot 42132 aks6d1c2p2 42158 hashscontpow 42161 rspcsbnea 42170 aks6d1c6lem3 42211 fsuppind 42629 zindbi 42985 cnvtrucl0 43663 ismnushort 44340 e2ebind 44602 uunT1 44818 ovnval2 46589 ovnval2b 46596 hoiqssbl 46669 6gbe 47808 8gbe 47810 isgrim 47919 usgrexmpl1tri 48062 gpgov 48079 gpg3kgrtriex 48126 |
| Copyright terms: Public domain | W3C validator |