| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ifpbi23d 1079 3anbi12d 1439 3anbi13d 1440 3anbi23d 1441 3anbi1d 1442 3anbi2d 1443 3anbi3d 1444 nfald2 2443 exdistrf 2445 sb6x 2462 axc16gALT 2488 raleqOLD 3304 rexeqOLD 3305 vtoclegft 3545 ralxpxfr2d 3603 rr19.3v 3624 rr19.28v 3625 rabtru 3647 moeq3 3674 euxfr2w 3682 euxfr2 3684 reuxfrd 3710 dfif3 4493 sseliALT 5251 copsexgw 5437 copsexg 5438 soeq1 5552 frd 5580 soinxp 5705 idrefALT 6066 ordtri3or 6343 nfriotadw 7318 oprabidw 7384 ov6g 7517 ovg 7518 sorpssi 7669 dfxp3 8003 fsplit 8057 frxp3 8091 xpord3inddlem 8094 aceq1 10030 aceq2 10032 axpowndlem4 10513 axpownd 10514 ltsopr 10945 creur 12140 creui 12141 o1fsum 15738 sumodd 16317 sadfval 16381 sadcp1 16384 pceu 16776 vdwlem12 16922 sgrp2rid2ex 18819 gsumval3eu 19801 lss1d 20884 nrmr0reg 23652 stdbdxmet 24419 xrsxmet 24714 cmetcaulem 25204 bcth3 25247 iundisj2 25466 ulmdvlem3 26327 ulmdv 26328 dchrvmasumlem2 27425 colrot1 28522 lnrot1 28586 lnrot2 28587 wlkson 29618 trlsfval 29657 pthsfval 29682 spthsfval 29683 clwlks 29735 crcts 29751 cycls 29752 3cyclfrgrrn1 30247 frgrwopreg 30285 reuxfrdf 32453 iundisj2f 32552 iundisj2fi 32753 constrcbvlem 33724 ordtprsuni 33888 pmeasmono 34294 erdszelem9 35174 satfv1fvfmla1 35398 opnrebl2 36297 wl-ifpimpr 37442 wl-df-3xor 37444 wl-ax11-lem9 37569 ax12fromc15 38886 axc16g-o 38915 ax12indalem 38926 ax12inda2ALT 38927 dihopelvalcpre 41230 lpolconN 41469 dvrelog2b 42042 isprimroot 42069 aks6d1c2p2 42095 hashscontpow 42098 rspcsbnea 42107 aks6d1c6lem3 42148 fsuppind 42566 zindbi 42922 cnvtrucl0 43600 ismnushort 44277 e2ebind 44540 uunT1 44756 ovnval2 46530 ovnval2b 46537 hoiqssbl 46610 6gbe 47759 8gbe 47761 isgrim 47870 usgrexmpl1tri 48013 gpgov 48030 gpg3kgrtriex 48077 |
| Copyright terms: Public domain | W3C validator |