![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biidd | Structured version Visualization version GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 261 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ifpbi23d 1081 3anbi12d 1438 3anbi13d 1439 3anbi23d 1440 3anbi1d 1441 3anbi2d 1442 3anbi3d 1443 nfald2 2445 exdistrf 2447 sb6x 2464 axc16gALT 2490 raleqOLD 3336 rexeqOLD 3337 vtoclegft 3574 ralxpxfr2d 3635 rr19.3v 3658 rr19.28v 3659 rabtru 3681 moeq3 3709 euxfr2w 3717 euxfr2 3719 reuxfrd 3745 dfif3 4543 sseliALT 5310 copsexgw 5491 copsexg 5492 soeq1 5610 frd 5636 soinxp 5758 idrefALT 6113 ordtri3or 6397 nfriotadw 7373 oprabidw 7440 ov6g 7571 ovg 7572 sorpssi 7719 dfxp3 8047 fsplit 8103 frxp3 8137 xpord3inddlem 8140 aceq1 10112 aceq2 10114 axpowndlem4 10595 axpownd 10596 ltsopr 11027 creur 12206 creui 12207 o1fsum 15759 sumodd 16331 sadfval 16393 sadcp1 16396 pceu 16779 vdwlem12 16925 sgrp2rid2ex 18808 gsumval3eu 19772 lss1d 20574 nrmr0reg 23253 stdbdxmet 24024 xrsxmet 24325 cmetcaulem 24805 bcth3 24848 iundisj2 25066 ulmdvlem3 25914 ulmdv 25915 dchrvmasumlem2 27001 colrot1 27810 lnrot1 27874 lnrot2 27875 wlkson 28913 trlsfval 28952 pthsfval 28978 spthsfval 28979 clwlks 29029 crcts 29045 cycls 29046 3cyclfrgrrn1 29538 frgrwopreg 29576 reuxfrdf 31731 iundisj2f 31821 iundisj2fi 32008 ordtprsuni 32899 pmeasmono 33323 erdszelem9 34190 satfv1fvfmla1 34414 opnrebl2 35206 wl-ifpimpr 36347 wl-df-3xor 36349 wl-ax11-lem9 36455 ax12fromc15 37775 axc16g-o 37804 ax12indalem 37815 ax12inda2ALT 37816 dihopelvalcpre 40119 lpolconN 40358 dvrelog2b 40931 aks6d1c2p2 40957 sticksstones11 40972 fsuppind 41162 zindbi 41685 cnvtrucl0 42375 ismnushort 43060 e2ebind 43324 uunT1 43541 ovnval2 45261 ovnval2b 45268 hoiqssbl 45341 6gbe 46439 8gbe 46441 |
Copyright terms: Public domain | W3C validator |