| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpALT | Structured version Visualization version GIF version | ||
| Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 44878 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44878. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 44522 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 44517). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4587). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwimpALT | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 𝑥 ∈ V) |
| 3 | id 22 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐴) | |
| 4 | elpwi 4587 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
| 6 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 7 | 5, 6 | sylan9ssr 3978 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 2, 7 | elpwgded 44517 | . . . . . 6 ⊢ ((⊤ ∧ (𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴)) → 𝑥 ∈ 𝒫 𝐵) |
| 9 | 8 | uunT1 44733 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵) |
| 10 | 9 | ex 412 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
| 11 | 10 | alrimiv 1926 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) |
| 12 | df-ss 3948 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
| 13 | 12 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 15 | 14 | idiALT 44431 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |