Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT Structured version   Visualization version   GIF version

Theorem sspwimpALT 43774
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 43774 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 43774. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 43418 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 43413). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4609). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . . . . 8 𝑥 ∈ V
21a1i 11 . . . . . . 7 (⊤ → 𝑥 ∈ V)
3 id 22 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐴)
4 elpwi 4609 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53, 4syl 17 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
75, 6sylan9ssr 3996 . . . . . . 7 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥𝐵)
82, 7elpwgded 43413 . . . . . 6 ((⊤ ∧ (𝐴𝐵𝑥 ∈ 𝒫 𝐴)) → 𝑥 ∈ 𝒫 𝐵)
98uunT1 43629 . . . . 5 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵)
109ex 413 . . . 4 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1110alrimiv 1930 . . 3 (𝐴𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
12 dfss2 3968 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1312biimpri 227 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1411, 13syl 17 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1514idiALT 43326 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  wtru 1542  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-pw 4604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator