MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vexOLD Structured version   Visualization version   GIF version

Theorem vexOLD 3427
Description: Obsolete version of vex 3426 as of 4-Sep-2024. (Contributed by NM, 26-May-1993.) Remove use of ax-12 2173. (Revised by SN, 28-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vexOLD 𝑥 ∈ V

Proof of Theorem vexOLD
StepHypRef Expression
1 equid 2016 . . 3 𝑥 = 𝑥
21vexw 2721 . 2 𝑥 ∈ {𝑥𝑥 = 𝑥}
3 df-v 3424 . 2 V = {𝑥𝑥 = 𝑥}
42, 3eleqtrri 2838 1 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2715  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator