| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vn0ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of vn0 4293. Shorter, but requiring df-clel 2804, ax-8 2112. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vn0ALT | ⊢ V ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ne0ii 4292 | 1 ⊢ V ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 Vcvv 3434 ∅c0 4281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3436 df-dif 3903 df-nul 4282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |