MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0ALT Structured version   Visualization version   GIF version

Theorem vn0ALT 4352
Description: Alternate proof of vn0 4351. Shorter, but requiring df-clel 2814, ax-8 2108. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vn0ALT V ≠ ∅

Proof of Theorem vn0ALT
StepHypRef Expression
1 vex 3482 . 2 𝑥 ∈ V
21ne0ii 4350 1 V ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2938  Vcvv 3478  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-nul 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator