MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0ALT Structured version   Visualization version   GIF version

Theorem vn0ALT 4309
Description: Alternate proof of vn0 4308. Shorter, but requiring df-clel 2803, ax-8 2111. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vn0ALT V ≠ ∅

Proof of Theorem vn0ALT
StepHypRef Expression
1 vex 3451 . 2 𝑥 ∈ V
21ne0ii 4307 1 V ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2925  Vcvv 3447  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-nul 4297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator