MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0ALT Structured version   Visualization version   GIF version

Theorem vn0ALT 4297
Description: Alternate proof of vn0 4296. Shorter, but requiring df-clel 2808, ax-8 2115. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vn0ALT V ≠ ∅

Proof of Theorem vn0ALT
StepHypRef Expression
1 vex 3442 . 2 𝑥 ∈ V
21ne0ii 4295 1 V ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2930  Vcvv 3438  c0 4284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-v 3440  df-dif 3902  df-nul 4285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator