MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vn0ALT Structured version   Visualization version   GIF version

Theorem vn0ALT 4270
Description: Alternate proof of vn0 4269. Shorter, but requiring df-clel 2817, ax-8 2110. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
vn0ALT V ≠ ∅

Proof of Theorem vn0ALT
StepHypRef Expression
1 vex 3426 . 2 𝑥 ∈ V
21ne0ii 4268 1 V ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2942  Vcvv 3422  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator