MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dif Structured version   Visualization version   GIF version

Definition df-dif 3887
Description: Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. For example, ({1, 3} ∖ {1, 8}) = {3} (ex-dif 28663). Contrast this operation with union (𝐴𝐵) (df-un 3889) and intersection (𝐴𝐵) (df-in 3891). Several notations are used in the literature; we chose the convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-dif (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-dif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cdif 3881 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1542 . . . . 5 class 𝑥
65, 1wcel 2112 . . . 4 wff 𝑥𝐴
75, 2wcel 2112 . . . . 5 wff 𝑥𝐵
87wn 3 . . . 4 wff ¬ 𝑥𝐵
96, 8wa 399 . . 3 wff (𝑥𝐴 ∧ ¬ 𝑥𝐵)
109, 4cab 2716 . 2 class {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
113, 10wceq 1543 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
Colors of variables: wff setvar class
This definition is referenced by:  dfdif2  3893  eldif  3894  notabw  4235  dfnul4  4256  dfnul2OLD  4259  noelOLD  4263
  Copyright terms: Public domain W3C validator