![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version |
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4335. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
ne0ii | ⊢ 𝐵 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ne0i 4335 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ≠ wne 2941 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-dif 3952 df-nul 4324 |
This theorem is referenced by: vn0ALT 4340 prnz 4782 tpnz 4784 pwne0 5356 onn0 6430 oawordeulem 8554 noinfep 9655 fin23lem31 10338 isfin1-3 10381 omina 10686 nnunb 12468 rpnnen1lem4 12964 rpnnen1lem5 12965 rexfiuz 15294 caurcvg 15623 caurcvg2 15624 caucvg 15625 infcvgaux1i 15803 divalglem2 16338 pc2dvds 16812 vdwmc2 16912 cnsubglem 20994 cnmsubglem 21008 pmatcollpw3 22286 zfbas 23400 nrginvrcn 24209 lebnumlem3 24479 caun0 24798 cnflduss 24873 cnfldcusp 24874 reust 24898 recusp 24899 nulmbl2 25053 itg2seq 25260 itg2monolem1 25268 c1lip1 25514 aannenlem2 25842 logbmpt 26293 tgcgr4 27782 shintcl 30583 chintcl 30585 nmoprepnf 31120 nmfnrepnf 31133 nmcexi 31279 snct 31938 esum0 33047 esumpcvgval 33076 bnj906 33941 satf0 34363 fmla1 34378 prv0 34421 bj-tagn0 35860 taupi 36204 ismblfin 36529 volsupnfl 36533 itg2addnclem 36539 ftc1anc 36569 incsequz 36616 isbnd3 36652 ssbnd 36656 onexomgt 41990 dflim5 42079 corclrcl 42458 imo72b2lem0 42917 imo72b2lem2 42919 imo72b2lem1 42921 imo72b2 42924 amgm2d 42950 nnn0 44088 ren0 44112 ioodvbdlimc1 44649 ioodvbdlimc2 44651 stirlinglem13 44802 fourierdlem103 44925 fourierdlem104 44926 fouriersw 44947 hoicvr 45264 pzriprnglem4 46808 2zlidl 46832 |
Copyright terms: Public domain | W3C validator |