![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version |
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4334. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
ne0ii | ⊢ 𝐵 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ne0i 4334 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2939 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-dif 3951 df-nul 4323 |
This theorem is referenced by: vn0ALT 4339 prnz 4781 tpnz 4783 pwne0 5355 onn0 6429 oawordeulem 8560 noinfep 9661 fin23lem31 10344 isfin1-3 10387 omina 10692 nnunb 12475 rpnnen1lem4 12971 rpnnen1lem5 12972 rexfiuz 15301 caurcvg 15630 caurcvg2 15631 caucvg 15632 infcvgaux1i 15810 divalglem2 16345 pc2dvds 16819 vdwmc2 16919 cnsubglem 21283 cnmsubglem 21297 pzriprnglem4 21344 pmatcollpw3 22606 zfbas 23720 nrginvrcn 24529 lebnumlem3 24809 caun0 25129 cnflduss 25204 cnfldcusp 25205 reust 25229 recusp 25230 nulmbl2 25385 itg2seq 25592 itg2monolem1 25600 c1lip1 25850 aannenlem2 26181 logbmpt 26634 tgcgr4 28216 shintcl 31017 chintcl 31019 nmoprepnf 31554 nmfnrepnf 31567 nmcexi 31713 snct 32372 esum0 33512 esumpcvgval 33541 bnj906 34406 satf0 34828 fmla1 34843 prv0 34886 bj-tagn0 36326 taupi 36670 ismblfin 36995 volsupnfl 36999 itg2addnclem 37005 ftc1anc 37035 incsequz 37082 isbnd3 37118 ssbnd 37122 onexomgt 42455 dflim5 42544 corclrcl 42923 imo72b2lem0 43382 imo72b2lem2 43384 imo72b2lem1 43386 imo72b2 43389 amgm2d 43415 nnn0 44549 ren0 44573 ioodvbdlimc1 45110 ioodvbdlimc2 45112 stirlinglem13 45263 fourierdlem103 45386 fourierdlem104 45387 fouriersw 45408 hoicvr 45725 2zlidl 47079 |
Copyright terms: Public domain | W3C validator |