| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4290. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4290 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: vn0ALT 4295 prnz 4731 tpnz 4733 pwne0 5299 onn0 6379 oawordeulem 8477 noinfep 9559 fin23lem31 10243 isfin1-3 10286 omina 10591 nnunb 12386 rpnnen1lem4 12882 rpnnen1lem5 12883 rexfiuz 15259 caurcvg 15588 caurcvg2 15589 caucvg 15590 infcvgaux1i 15768 divalglem2 16310 pc2dvds 16795 vdwmc2 16895 cnsubglem 21356 cnmsubglem 21371 pzriprnglem4 21425 pmatcollpw3 22702 zfbas 23814 nrginvrcn 24610 lebnumlem3 24892 caun0 25211 cnflduss 25286 cnfldcusp 25287 reust 25311 recusp 25312 nulmbl2 25467 itg2seq 25673 itg2monolem1 25681 c1lip1 25932 aannenlem2 26267 logbmpt 26728 tgcgr4 28512 shintcl 31314 chintcl 31316 nmoprepnf 31851 nmfnrepnf 31864 nmcexi 32010 snct 32701 constrext2chnlem 33786 constrfiss 33787 esum0 34085 esumpcvgval 34114 bnj906 34965 satf0 35439 fmla1 35454 prv0 35497 bj-tagn0 37046 taupi 37390 ismblfin 37724 volsupnfl 37728 itg2addnclem 37734 ftc1anc 37764 incsequz 37811 isbnd3 37847 ssbnd 37851 onexomgt 43361 dflim5 43449 corclrcl 43827 imo72b2lem2 44287 imo72b2lem1 44289 imo72b2 44292 amgm2d 44318 nnn0 45503 ren0 45527 ioodvbdlimc1 46058 ioodvbdlimc2 46060 stirlinglem13 46211 fourierdlem103 46334 fourierdlem104 46335 fouriersw 46356 hoicvr 46673 2zlidl 48367 termc2 49646 |
| Copyright terms: Public domain | W3C validator |