| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4307. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4307 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: vn0ALT 4312 prnz 4744 tpnz 4746 pwne0 5315 onn0 6401 oawordeulem 8521 noinfep 9620 fin23lem31 10303 isfin1-3 10346 omina 10651 nnunb 12445 rpnnen1lem4 12946 rpnnen1lem5 12947 rexfiuz 15321 caurcvg 15650 caurcvg2 15651 caucvg 15652 infcvgaux1i 15830 divalglem2 16372 pc2dvds 16857 vdwmc2 16957 cnsubglem 21339 cnmsubglem 21354 pzriprnglem4 21401 pmatcollpw3 22678 zfbas 23790 nrginvrcn 24587 lebnumlem3 24869 caun0 25188 cnflduss 25263 cnfldcusp 25264 reust 25288 recusp 25289 nulmbl2 25444 itg2seq 25650 itg2monolem1 25658 c1lip1 25909 aannenlem2 26244 logbmpt 26705 tgcgr4 28465 shintcl 31266 chintcl 31268 nmoprepnf 31803 nmfnrepnf 31816 nmcexi 31962 snct 32644 constrext2chnlem 33747 constrfiss 33748 esum0 34046 esumpcvgval 34075 bnj906 34927 satf0 35366 fmla1 35381 prv0 35424 bj-tagn0 36974 taupi 37318 ismblfin 37662 volsupnfl 37666 itg2addnclem 37672 ftc1anc 37702 incsequz 37749 isbnd3 37785 ssbnd 37789 onexomgt 43237 dflim5 43325 corclrcl 43703 imo72b2lem2 44163 imo72b2lem1 44165 imo72b2 44168 amgm2d 44194 nnn0 45381 ren0 45405 ioodvbdlimc1 45938 ioodvbdlimc2 45940 stirlinglem13 46091 fourierdlem103 46214 fourierdlem104 46215 fouriersw 46236 hoicvr 46553 2zlidl 48232 termc2 49511 |
| Copyright terms: Public domain | W3C validator |