Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version |
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4265. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
ne0ii | ⊢ 𝐵 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ne0i 4265 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-dif 3886 df-nul 4254 |
This theorem is referenced by: vn0ALT 4270 prnz 4710 tpnz 4712 pwne0 5274 onn0 6315 oawordeulem 8347 noinfep 9348 fin23lem31 10030 isfin1-3 10073 omina 10378 nnunb 12159 rpnnen1lem4 12649 rpnnen1lem5 12650 rexfiuz 14987 caurcvg 15316 caurcvg2 15317 caucvg 15318 infcvgaux1i 15497 divalglem2 16032 pc2dvds 16508 vdwmc2 16608 cnsubglem 20559 cnmsubglem 20573 pmatcollpw3 21841 zfbas 22955 nrginvrcn 23762 lebnumlem3 24032 caun0 24350 cnflduss 24425 cnfldcusp 24426 reust 24450 recusp 24451 nulmbl2 24605 itg2seq 24812 itg2monolem1 24820 c1lip1 25066 aannenlem2 25394 logbmpt 25843 tgcgr4 26796 shintcl 29593 chintcl 29595 nmoprepnf 30130 nmfnrepnf 30143 nmcexi 30289 snct 30950 esum0 31917 esumpcvgval 31946 bnj906 32810 satf0 33234 fmla1 33249 prv0 33292 bj-tagn0 35096 taupi 35421 ismblfin 35745 volsupnfl 35749 itg2addnclem 35755 ftc1anc 35785 incsequz 35833 isbnd3 35869 ssbnd 35873 corclrcl 41204 imo72b2lem0 41665 imo72b2lem2 41667 imo72b2lem1 41669 imo72b2 41672 amgm2d 41698 nnn0 42807 ren0 42832 ioodvbdlimc1 43364 ioodvbdlimc2 43366 stirlinglem13 43517 fourierdlem103 43640 fourierdlem104 43641 fouriersw 43662 hoicvr 43976 2zlidl 45380 |
Copyright terms: Public domain | W3C validator |