| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4294. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4294 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: vn0ALT 4299 prnz 4731 tpnz 4733 pwne0 5299 onn0 6377 oawordeulem 8479 noinfep 9575 fin23lem31 10256 isfin1-3 10299 omina 10604 nnunb 12398 rpnnen1lem4 12899 rpnnen1lem5 12900 rexfiuz 15273 caurcvg 15602 caurcvg2 15603 caucvg 15604 infcvgaux1i 15782 divalglem2 16324 pc2dvds 16809 vdwmc2 16909 cnsubglem 21340 cnmsubglem 21355 pzriprnglem4 21409 pmatcollpw3 22687 zfbas 23799 nrginvrcn 24596 lebnumlem3 24878 caun0 25197 cnflduss 25272 cnfldcusp 25273 reust 25297 recusp 25298 nulmbl2 25453 itg2seq 25659 itg2monolem1 25667 c1lip1 25918 aannenlem2 26253 logbmpt 26714 tgcgr4 28494 shintcl 31292 chintcl 31294 nmoprepnf 31829 nmfnrepnf 31842 nmcexi 31988 snct 32670 constrext2chnlem 33719 constrfiss 33720 esum0 34018 esumpcvgval 34047 bnj906 34899 satf0 35347 fmla1 35362 prv0 35405 bj-tagn0 36955 taupi 37299 ismblfin 37643 volsupnfl 37647 itg2addnclem 37653 ftc1anc 37683 incsequz 37730 isbnd3 37766 ssbnd 37770 onexomgt 43217 dflim5 43305 corclrcl 43683 imo72b2lem2 44143 imo72b2lem1 44145 imo72b2 44148 amgm2d 44174 nnn0 45361 ren0 45385 ioodvbdlimc1 45918 ioodvbdlimc2 45920 stirlinglem13 46071 fourierdlem103 46194 fourierdlem104 46195 fouriersw 46216 hoicvr 46533 2zlidl 48228 termc2 49507 |
| Copyright terms: Public domain | W3C validator |