| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4316. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4316 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: vn0ALT 4321 prnz 4753 tpnz 4755 pwne0 5327 onn0 6418 oawordeulem 8566 noinfep 9674 fin23lem31 10357 isfin1-3 10400 omina 10705 nnunb 12497 rpnnen1lem4 12996 rpnnen1lem5 12997 rexfiuz 15366 caurcvg 15693 caurcvg2 15694 caucvg 15695 infcvgaux1i 15873 divalglem2 16414 pc2dvds 16899 vdwmc2 16999 cnsubglem 21383 cnmsubglem 21398 pzriprnglem4 21445 pmatcollpw3 22722 zfbas 23834 nrginvrcn 24631 lebnumlem3 24913 caun0 25233 cnflduss 25308 cnfldcusp 25309 reust 25333 recusp 25334 nulmbl2 25489 itg2seq 25695 itg2monolem1 25703 c1lip1 25954 aannenlem2 26289 logbmpt 26750 tgcgr4 28510 shintcl 31311 chintcl 31313 nmoprepnf 31848 nmfnrepnf 31861 nmcexi 32007 snct 32691 constrext2chnlem 33784 constrfiss 33785 esum0 34080 esumpcvgval 34109 bnj906 34961 satf0 35394 fmla1 35409 prv0 35452 bj-tagn0 36997 taupi 37341 ismblfin 37685 volsupnfl 37689 itg2addnclem 37695 ftc1anc 37725 incsequz 37772 isbnd3 37808 ssbnd 37812 onexomgt 43265 dflim5 43353 corclrcl 43731 imo72b2lem2 44191 imo72b2lem1 44193 imo72b2 44196 amgm2d 44222 nnn0 45405 ren0 45429 ioodvbdlimc1 45962 ioodvbdlimc2 45964 stirlinglem13 46115 fourierdlem103 46238 fourierdlem104 46239 fouriersw 46260 hoicvr 46577 2zlidl 48215 termc2 49403 |
| Copyright terms: Public domain | W3C validator |