| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4304. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4304 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: vn0ALT 4309 prnz 4741 tpnz 4743 pwne0 5312 onn0 6398 oawordeulem 8518 noinfep 9613 fin23lem31 10296 isfin1-3 10339 omina 10644 nnunb 12438 rpnnen1lem4 12939 rpnnen1lem5 12940 rexfiuz 15314 caurcvg 15643 caurcvg2 15644 caucvg 15645 infcvgaux1i 15823 divalglem2 16365 pc2dvds 16850 vdwmc2 16950 cnsubglem 21332 cnmsubglem 21347 pzriprnglem4 21394 pmatcollpw3 22671 zfbas 23783 nrginvrcn 24580 lebnumlem3 24862 caun0 25181 cnflduss 25256 cnfldcusp 25257 reust 25281 recusp 25282 nulmbl2 25437 itg2seq 25643 itg2monolem1 25651 c1lip1 25902 aannenlem2 26237 logbmpt 26698 tgcgr4 28458 shintcl 31259 chintcl 31261 nmoprepnf 31796 nmfnrepnf 31809 nmcexi 31955 snct 32637 constrext2chnlem 33740 constrfiss 33741 esum0 34039 esumpcvgval 34068 bnj906 34920 satf0 35359 fmla1 35374 prv0 35417 bj-tagn0 36967 taupi 37311 ismblfin 37655 volsupnfl 37659 itg2addnclem 37665 ftc1anc 37695 incsequz 37742 isbnd3 37778 ssbnd 37782 onexomgt 43230 dflim5 43318 corclrcl 43696 imo72b2lem2 44156 imo72b2lem1 44158 imo72b2 44161 amgm2d 44187 nnn0 45374 ren0 45398 ioodvbdlimc1 45931 ioodvbdlimc2 45933 stirlinglem13 46084 fourierdlem103 46207 fourierdlem104 46208 fouriersw 46229 hoicvr 46546 2zlidl 48228 termc2 49507 |
| Copyright terms: Public domain | W3C validator |