![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version |
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4364. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
ne0ii | ⊢ 𝐵 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | ne0i 4364 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-dif 3979 df-nul 4353 |
This theorem is referenced by: vn0ALT 4369 prnz 4802 tpnz 4804 pwne0 5375 onn0 6460 oawordeulem 8610 noinfep 9729 fin23lem31 10412 isfin1-3 10455 omina 10760 nnunb 12549 rpnnen1lem4 13045 rpnnen1lem5 13046 rexfiuz 15396 caurcvg 15725 caurcvg2 15726 caucvg 15727 infcvgaux1i 15905 divalglem2 16443 pc2dvds 16926 vdwmc2 17026 cnsubglem 21456 cnmsubglem 21471 pzriprnglem4 21518 pmatcollpw3 22811 zfbas 23925 nrginvrcn 24734 lebnumlem3 25014 caun0 25334 cnflduss 25409 cnfldcusp 25410 reust 25434 recusp 25435 nulmbl2 25590 itg2seq 25797 itg2monolem1 25805 c1lip1 26056 aannenlem2 26389 logbmpt 26849 tgcgr4 28557 shintcl 31362 chintcl 31364 nmoprepnf 31899 nmfnrepnf 31912 nmcexi 32058 snct 32727 esum0 34013 esumpcvgval 34042 bnj906 34906 satf0 35340 fmla1 35355 prv0 35398 bj-tagn0 36945 taupi 37289 ismblfin 37621 volsupnfl 37625 itg2addnclem 37631 ftc1anc 37661 incsequz 37708 isbnd3 37744 ssbnd 37748 onexomgt 43202 dflim5 43291 corclrcl 43669 imo72b2lem0 44127 imo72b2lem2 44129 imo72b2lem1 44131 imo72b2 44134 amgm2d 44160 nnn0 45293 ren0 45317 ioodvbdlimc1 45854 ioodvbdlimc2 45856 stirlinglem13 46007 fourierdlem103 46130 fourierdlem104 46131 fouriersw 46152 hoicvr 46469 2zlidl 47963 |
Copyright terms: Public domain | W3C validator |