| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0ii | Structured version Visualization version GIF version | ||
| Description: If a class has elements, then it is nonempty. Inference associated with ne0i 4291. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| ne0ii | ⊢ 𝐵 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | ne0i 4291 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: vn0ALT 4296 prnz 4730 tpnz 4732 pwne0 5295 onn0 6372 oawordeulem 8469 noinfep 9550 fin23lem31 10234 isfin1-3 10277 omina 10582 nnunb 12377 rpnnen1lem4 12878 rpnnen1lem5 12879 rexfiuz 15255 caurcvg 15584 caurcvg2 15585 caucvg 15586 infcvgaux1i 15764 divalglem2 16306 pc2dvds 16791 vdwmc2 16891 cnsubglem 21353 cnmsubglem 21368 pzriprnglem4 21422 pmatcollpw3 22700 zfbas 23812 nrginvrcn 24608 lebnumlem3 24890 caun0 25209 cnflduss 25284 cnfldcusp 25285 reust 25309 recusp 25310 nulmbl2 25465 itg2seq 25671 itg2monolem1 25679 c1lip1 25930 aannenlem2 26265 logbmpt 26726 tgcgr4 28510 shintcl 31308 chintcl 31310 nmoprepnf 31845 nmfnrepnf 31858 nmcexi 32004 snct 32693 constrext2chnlem 33761 constrfiss 33762 esum0 34060 esumpcvgval 34089 bnj906 34940 satf0 35414 fmla1 35429 prv0 35472 bj-tagn0 37019 taupi 37363 ismblfin 37707 volsupnfl 37711 itg2addnclem 37717 ftc1anc 37747 incsequz 37794 isbnd3 37830 ssbnd 37834 onexomgt 43280 dflim5 43368 corclrcl 43746 imo72b2lem2 44206 imo72b2lem1 44208 imo72b2 44211 amgm2d 44237 nnn0 45422 ren0 45446 ioodvbdlimc1 45977 ioodvbdlimc2 45979 stirlinglem13 46130 fourierdlem103 46253 fourierdlem104 46254 fouriersw 46275 hoicvr 46592 2zlidl 48277 termc2 49556 |
| Copyright terms: Public domain | W3C validator |