Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclb | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
vtoclb.1 | ⊢ 𝐴 ∈ V |
vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclb | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
6 | 1, 4, 5 | vtocl 3488 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: bnj609 32797 |
Copyright terms: Public domain | W3C validator |