Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl3 | Structured version Visualization version GIF version |
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Avoid ax-10 2139 and ax-11 2156. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.) |
Ref | Expression |
---|---|
vtocl3.1 | ⊢ 𝐴 ∈ V |
vtocl3.2 | ⊢ 𝐵 ∈ V |
vtocl3.3 | ⊢ 𝐶 ∈ V |
vtocl3.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
vtocl3.5 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl3 | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl3.3 | . 2 ⊢ 𝐶 ∈ V | |
2 | vtocl3.5 | . . . 4 ⊢ 𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑧 = 𝐶 → 𝜑) |
4 | vtocl3.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | vtocl3.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | vtocl3.4 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
7 | 6 | 3expa 1116 | . . . . 5 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
8 | 7 | pm5.74da 800 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑧 = 𝐶 → 𝜑) ↔ (𝑧 = 𝐶 → 𝜓))) |
9 | 4, 5, 8, 3 | vtocl2 3490 | . . 3 ⊢ (𝑧 = 𝐶 → 𝜓) |
10 | 3, 9 | 2thd 264 | . 2 ⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) |
11 | 1, 10, 2 | vtocl 3488 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1784 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |