MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3 Structured version   Visualization version   GIF version

Theorem vtocl3 3567
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) Avoid ax-10 2139 and ax-11 2155. (Revised by GG, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 23-Aug-2023.)
Hypotheses
Ref Expression
vtocl3.1 𝐴 ∈ V
vtocl3.2 𝐵 ∈ V
vtocl3.3 𝐶 ∈ V
vtocl3.4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
vtocl3.5 𝜑
Assertion
Ref Expression
vtocl3 𝜓
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐵(𝑧)

Proof of Theorem vtocl3
StepHypRef Expression
1 vtocl3.3 . 2 𝐶 ∈ V
2 vtocl3.5 . . . 4 𝜑
32a1i 11 . . 3 (𝑧 = 𝐶𝜑)
4 vtocl3.1 . . . 4 𝐴 ∈ V
5 vtocl3.2 . . . 4 𝐵 ∈ V
6 vtocl3.4 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
763expa 1117 . . . . 5 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑𝜓))
87pm5.74da 804 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑧 = 𝐶𝜑) ↔ (𝑧 = 𝐶𝜓)))
94, 5, 8, 3vtocl2 3566 . . 3 (𝑧 = 𝐶𝜓)
103, 92thd 265 . 2 (𝑧 = 𝐶 → (𝜑𝜓))
111, 10, 2vtocl 3558 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1777  df-clel 2814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator