| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2142. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3518 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: vtocl2 3529 vtocl3 3530 vtoclb 3531 zfauscl 5248 fnbrfvb 6893 caovcan 7573 findcard2 9105 bnd2 9822 kmlem2 10081 axcc2lem 10365 dominf 10374 dcomex 10376 ac4c 10405 ac5 10406 dominfac 10502 grothomex 10758 ramub2 16961 ismred2 17540 utopsnneiplem 24111 dvfsumlem2 25909 dvfsumlem2OLD 25910 plydivlem4 26180 bnj865 34886 bnj1015 34925 poimirlem13 37600 poimirlem14 37601 poimirlem17 37604 poimirlem20 37607 poimirlem25 37612 poimirlem28 37615 poimirlem31 37618 poimirlem32 37619 voliunnfl 37631 volsupnfl 37632 prdsbnd2 37762 iscringd 37965 monotoddzzfi 42904 monotoddzz 42905 frege104 43929 dvgrat 44274 cvgdvgrat 44275 permac8prim 44977 wessf1ornlem 45152 xrlexaddrp 45321 infleinf 45341 dvnmul 45914 dvnprodlem2 45918 fourierdlem41 46119 fourierdlem48 46125 fourierdlem49 46126 fourierdlem51 46128 fourierdlem71 46148 fourierdlem83 46160 fourierdlem97 46174 etransclem2 46207 etransclem46 46251 isomenndlem 46501 ovnsubaddlem1 46541 hoidmvlelem3 46568 vonicclem2 46655 smflimlem1 46742 smflimlem2 46743 smflimlem3 46744 funressndmafv2rn 47197 |
| Copyright terms: Public domain | W3C validator |