Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. See also vtoclALT 3489. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2139. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.3 | . . 3 ⊢ 𝜑 | |
2 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | vtocl.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3437 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
6 | 3, 5 | exlimiiv 1935 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: vtocl2 3490 vtocl3 3491 vtoclb 3492 zfauscl 5220 fnbrfvb 6804 caovcan 7454 findcard2 8909 findcard2OLD 8986 frmin 9438 bnd2 9582 kmlem2 9838 axcc2lem 10123 dominf 10132 dcomex 10134 ac4c 10163 ac5 10164 dominfac 10260 pwfseqlem4 10349 grothomex 10516 ramub2 16643 ismred2 17229 utopsnneiplem 23307 dvfsumlem2 25096 plydivlem4 25361 bnj865 32803 bnj1015 32842 poimirlem13 35717 poimirlem14 35718 poimirlem17 35721 poimirlem20 35724 poimirlem25 35729 poimirlem28 35732 poimirlem31 35735 poimirlem32 35736 voliunnfl 35748 volsupnfl 35749 prdsbnd2 35880 iscringd 36083 monotoddzzfi 40680 monotoddzz 40681 frege104 41464 dvgrat 41819 cvgdvgrat 41820 wessf1ornlem 42611 xrlexaddrp 42781 infleinf 42801 dvnmul 43374 dvnprodlem2 43378 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem51 43588 fourierdlem71 43608 fourierdlem83 43620 fourierdlem97 43634 etransclem2 43667 etransclem46 43711 isomenndlem 43958 ovnsubaddlem1 43998 hoidmvlelem3 44025 vonicclem2 44112 smflimlem1 44193 smflimlem2 44194 smflimlem3 44195 funressndmafv2rn 44602 |
Copyright terms: Public domain | W3C validator |