![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2139. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
5 | 1, 4 | vtocle 3555 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clel 2814 |
This theorem is referenced by: vtocl2 3566 vtocl3 3567 vtoclb 3568 zfauscl 5304 fnbrfvb 6960 caovcan 7637 findcard2 9203 bnd2 9931 kmlem2 10190 axcc2lem 10474 dominf 10483 dcomex 10485 ac4c 10514 ac5 10515 dominfac 10611 grothomex 10867 ramub2 17048 ismred2 17648 utopsnneiplem 24272 dvfsumlem2 26082 dvfsumlem2OLD 26083 plydivlem4 26353 bnj865 34916 bnj1015 34955 poimirlem13 37620 poimirlem14 37621 poimirlem17 37624 poimirlem20 37627 poimirlem25 37632 poimirlem28 37635 poimirlem31 37638 poimirlem32 37639 voliunnfl 37651 volsupnfl 37652 prdsbnd2 37782 iscringd 37985 monotoddzzfi 42931 monotoddzz 42932 frege104 43957 dvgrat 44308 cvgdvgrat 44309 wessf1ornlem 45128 xrlexaddrp 45302 infleinf 45322 dvnmul 45899 dvnprodlem2 45903 fourierdlem41 46104 fourierdlem48 46110 fourierdlem49 46111 fourierdlem51 46113 fourierdlem71 46133 fourierdlem83 46145 fourierdlem97 46159 etransclem2 46192 etransclem46 46236 isomenndlem 46486 ovnsubaddlem1 46526 hoidmvlelem3 46553 vonicclem2 46640 smflimlem1 46727 smflimlem2 46728 smflimlem3 46729 funressndmafv2rn 47173 |
Copyright terms: Public domain | W3C validator |