![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2141. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
5 | 1, 4 | vtocle 3567 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: vtocl2 3578 vtocl3 3579 vtoclb 3580 zfauscl 5319 fnbrfvb 6973 caovcan 7654 findcard2 9230 bnd2 9962 kmlem2 10221 axcc2lem 10505 dominf 10514 dcomex 10516 ac4c 10545 ac5 10546 dominfac 10642 grothomex 10898 ramub2 17061 ismred2 17661 utopsnneiplem 24277 dvfsumlem2 26087 dvfsumlem2OLD 26088 plydivlem4 26356 bnj865 34899 bnj1015 34938 poimirlem13 37593 poimirlem14 37594 poimirlem17 37597 poimirlem20 37600 poimirlem25 37605 poimirlem28 37608 poimirlem31 37611 poimirlem32 37612 voliunnfl 37624 volsupnfl 37625 prdsbnd2 37755 iscringd 37958 monotoddzzfi 42899 monotoddzz 42900 frege104 43929 dvgrat 44281 cvgdvgrat 44282 wessf1ornlem 45092 xrlexaddrp 45267 infleinf 45287 dvnmul 45864 dvnprodlem2 45868 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem51 46078 fourierdlem71 46098 fourierdlem83 46110 fourierdlem97 46124 etransclem2 46157 etransclem46 46201 isomenndlem 46451 ovnsubaddlem1 46491 hoidmvlelem3 46518 vonicclem2 46605 smflimlem1 46692 smflimlem2 46693 smflimlem3 46694 funressndmafv2rn 47138 |
Copyright terms: Public domain | W3C validator |