| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2142. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3521 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: vtocl2 3532 vtocl3 3533 vtoclb 3534 zfauscl 5253 fnbrfvb 6911 caovcan 7593 findcard2 9128 bnd2 9846 kmlem2 10105 axcc2lem 10389 dominf 10398 dcomex 10400 ac4c 10429 ac5 10430 dominfac 10526 grothomex 10782 ramub2 16985 ismred2 17564 utopsnneiplem 24135 dvfsumlem2 25933 dvfsumlem2OLD 25934 plydivlem4 26204 bnj865 34913 bnj1015 34952 poimirlem13 37627 poimirlem14 37628 poimirlem17 37631 poimirlem20 37634 poimirlem25 37639 poimirlem28 37642 poimirlem31 37645 poimirlem32 37646 voliunnfl 37658 volsupnfl 37659 prdsbnd2 37789 iscringd 37992 monotoddzzfi 42931 monotoddzz 42932 frege104 43956 dvgrat 44301 cvgdvgrat 44302 permac8prim 45004 wessf1ornlem 45179 xrlexaddrp 45348 infleinf 45368 dvnmul 45941 dvnprodlem2 45945 fourierdlem41 46146 fourierdlem48 46152 fourierdlem49 46153 fourierdlem51 46155 fourierdlem71 46175 fourierdlem83 46187 fourierdlem97 46201 etransclem2 46234 etransclem46 46278 isomenndlem 46528 ovnsubaddlem1 46568 hoidmvlelem3 46595 vonicclem2 46682 smflimlem1 46769 smflimlem2 46770 smflimlem3 46771 funressndmafv2rn 47221 |
| Copyright terms: Public domain | W3C validator |