| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2142. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3518 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: vtocl2 3529 vtocl3 3530 vtoclb 3531 zfauscl 5248 fnbrfvb 6893 caovcan 7573 findcard2 9105 bnd2 9822 kmlem2 10081 axcc2lem 10365 dominf 10374 dcomex 10376 ac4c 10405 ac5 10406 dominfac 10502 grothomex 10758 ramub2 16961 ismred2 17540 utopsnneiplem 24168 dvfsumlem2 25966 dvfsumlem2OLD 25967 plydivlem4 26237 bnj865 34906 bnj1015 34945 poimirlem13 37620 poimirlem14 37621 poimirlem17 37624 poimirlem20 37627 poimirlem25 37632 poimirlem28 37635 poimirlem31 37638 poimirlem32 37639 voliunnfl 37651 volsupnfl 37652 prdsbnd2 37782 iscringd 37985 monotoddzzfi 42924 monotoddzz 42925 frege104 43949 dvgrat 44294 cvgdvgrat 44295 permac8prim 44997 wessf1ornlem 45172 xrlexaddrp 45341 infleinf 45361 dvnmul 45934 dvnprodlem2 45938 fourierdlem41 46139 fourierdlem48 46145 fourierdlem49 46146 fourierdlem51 46148 fourierdlem71 46168 fourierdlem83 46180 fourierdlem97 46194 etransclem2 46227 etransclem46 46271 isomenndlem 46521 ovnsubaddlem1 46561 hoidmvlelem3 46588 vonicclem2 46675 smflimlem1 46762 smflimlem2 46763 smflimlem3 46764 funressndmafv2rn 47217 |
| Copyright terms: Public domain | W3C validator |