Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. See also vtoclALT 3499. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2137. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.3 | . . 3 ⊢ 𝜑 | |
2 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | vtocl.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3447 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
6 | 3, 5 | exlimiiv 1934 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 |
This theorem is referenced by: vtocl2 3500 vtocl3 3501 vtoclb 3502 zfauscl 5225 fnbrfvb 6822 caovcan 7476 findcard2 8947 findcard2OLD 9056 bnd2 9651 kmlem2 9907 axcc2lem 10192 dominf 10201 dcomex 10203 ac4c 10232 ac5 10233 dominfac 10329 pwfseqlem4 10418 grothomex 10585 ramub2 16715 ismred2 17312 utopsnneiplem 23399 dvfsumlem2 25191 plydivlem4 25456 bnj865 32903 bnj1015 32942 poimirlem13 35790 poimirlem14 35791 poimirlem17 35794 poimirlem20 35797 poimirlem25 35802 poimirlem28 35805 poimirlem31 35808 poimirlem32 35809 voliunnfl 35821 volsupnfl 35822 prdsbnd2 35953 iscringd 36156 monotoddzzfi 40764 monotoddzz 40765 frege104 41575 dvgrat 41930 cvgdvgrat 41931 wessf1ornlem 42722 xrlexaddrp 42891 infleinf 42911 dvnmul 43484 dvnprodlem2 43488 fourierdlem41 43689 fourierdlem48 43695 fourierdlem49 43696 fourierdlem51 43698 fourierdlem71 43718 fourierdlem83 43730 fourierdlem97 43744 etransclem2 43777 etransclem46 43821 isomenndlem 44068 ovnsubaddlem1 44108 hoidmvlelem3 44135 vonicclem2 44222 smflimlem1 44306 smflimlem2 44307 smflimlem3 44308 funressndmafv2rn 44715 |
Copyright terms: Public domain | W3C validator |