Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. See also vtoclALT 3508. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2136. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.3 | . . 3 ⊢ 𝜑 | |
2 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | vtocl.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3456 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
6 | 3, 5 | exlimiiv 1933 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-clel 2815 |
This theorem is referenced by: vtocl2 3509 vtocl3 3510 vtoclb 3511 zfauscl 5238 fnbrfvb 6859 caovcan 7514 findcard2 9004 findcard2OLD 9124 bnd2 9719 kmlem2 9977 axcc2lem 10262 dominf 10271 dcomex 10273 ac4c 10302 ac5 10303 dominfac 10399 pwfseqlem4 10488 grothomex 10655 ramub2 16782 ismred2 17379 utopsnneiplem 23470 dvfsumlem2 25262 plydivlem4 25527 bnj865 33009 bnj1015 33048 poimirlem13 35850 poimirlem14 35851 poimirlem17 35854 poimirlem20 35857 poimirlem25 35862 poimirlem28 35865 poimirlem31 35868 poimirlem32 35869 voliunnfl 35881 volsupnfl 35882 prdsbnd2 36013 iscringd 36216 monotoddzzfi 40975 monotoddzz 40976 frege104 41803 dvgrat 42158 cvgdvgrat 42159 wessf1ornlem 42957 xrlexaddrp 43134 infleinf 43154 dvnmul 43728 dvnprodlem2 43732 fourierdlem41 43933 fourierdlem48 43939 fourierdlem49 43940 fourierdlem51 43942 fourierdlem71 43962 fourierdlem83 43974 fourierdlem97 43988 etransclem2 44021 etransclem46 44065 isomenndlem 44313 ovnsubaddlem1 44353 hoidmvlelem3 44380 vonicclem2 44467 smflimlem1 44554 smflimlem2 44555 smflimlem3 44556 funressndmafv2rn 44974 |
Copyright terms: Public domain | W3C validator |