![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. See also vtoclALT 3551. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2138. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.3 | . . 3 ⊢ 𝜑 | |
2 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | vtocl.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3490 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
6 | 3, 5 | exlimiiv 1935 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clel 2811 |
This theorem is referenced by: vtocl2 3552 vtocl3 3553 vtoclb 3554 zfauscl 5302 fnbrfvb 6945 caovcan 7611 findcard2 9164 findcard2OLD 9284 bnd2 9888 kmlem2 10146 axcc2lem 10431 dominf 10440 dcomex 10442 ac4c 10471 ac5 10472 dominfac 10568 pwfseqlem4 10657 grothomex 10824 ramub2 16947 ismred2 17547 utopsnneiplem 23752 dvfsumlem2 25544 plydivlem4 25809 bnj865 33934 bnj1015 33973 gg-dvfsumlem2 35183 poimirlem13 36501 poimirlem14 36502 poimirlem17 36505 poimirlem20 36508 poimirlem25 36513 poimirlem28 36516 poimirlem31 36519 poimirlem32 36520 voliunnfl 36532 volsupnfl 36533 prdsbnd2 36663 iscringd 36866 monotoddzzfi 41681 monotoddzz 41682 frege104 42718 dvgrat 43071 cvgdvgrat 43072 wessf1ornlem 43882 xrlexaddrp 44062 infleinf 44082 dvnmul 44659 dvnprodlem2 44663 fourierdlem41 44864 fourierdlem48 44870 fourierdlem49 44871 fourierdlem51 44873 fourierdlem71 44893 fourierdlem83 44905 fourierdlem97 44919 etransclem2 44952 etransclem46 44996 isomenndlem 45246 ovnsubaddlem1 45286 hoidmvlelem3 45313 vonicclem2 45400 smflimlem1 45487 smflimlem2 45488 smflimlem3 45489 funressndmafv2rn 45931 |
Copyright terms: Public domain | W3C validator |