| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2142. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3510 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: vtocl2 3521 vtocl3 3522 vtoclb 3523 zfauscl 5237 fnbrfvb 6873 caovcan 7553 findcard2 9078 bnd2 9789 kmlem2 10046 axcc2lem 10330 dominf 10339 dcomex 10341 ac4c 10370 ac5 10371 dominfac 10467 grothomex 10723 ramub2 16926 ismred2 17505 utopsnneiplem 24133 dvfsumlem2 25931 dvfsumlem2OLD 25932 plydivlem4 26202 bnj865 34890 bnj1015 34929 tz9.1regs 35067 poimirlem13 37613 poimirlem14 37614 poimirlem17 37617 poimirlem20 37620 poimirlem25 37625 poimirlem28 37628 poimirlem31 37631 poimirlem32 37632 voliunnfl 37644 volsupnfl 37645 prdsbnd2 37775 iscringd 37978 monotoddzzfi 42915 monotoddzz 42916 frege104 43940 dvgrat 44285 cvgdvgrat 44286 permac8prim 44988 wessf1ornlem 45163 xrlexaddrp 45332 infleinf 45351 dvnmul 45924 dvnprodlem2 45928 fourierdlem41 46129 fourierdlem48 46135 fourierdlem49 46136 fourierdlem51 46138 fourierdlem71 46158 fourierdlem83 46170 fourierdlem97 46184 etransclem2 46217 etransclem46 46261 isomenndlem 46511 ovnsubaddlem1 46551 hoidmvlelem3 46578 vonicclem2 46665 smflimlem1 46752 smflimlem2 46753 smflimlem3 46754 funressndmafv2rn 47207 |
| Copyright terms: Public domain | W3C validator |