| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2142. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3539 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 |
| This theorem is referenced by: vtocl2 3550 vtocl3 3551 vtoclb 3552 zfauscl 5273 fnbrfvb 6934 caovcan 7616 findcard2 9183 bnd2 9912 kmlem2 10171 axcc2lem 10455 dominf 10464 dcomex 10466 ac4c 10495 ac5 10496 dominfac 10592 grothomex 10848 ramub2 17039 ismred2 17620 utopsnneiplem 24191 dvfsumlem2 25990 dvfsumlem2OLD 25991 plydivlem4 26261 bnj865 34959 bnj1015 34998 poimirlem13 37662 poimirlem14 37663 poimirlem17 37666 poimirlem20 37669 poimirlem25 37674 poimirlem28 37677 poimirlem31 37680 poimirlem32 37681 voliunnfl 37693 volsupnfl 37694 prdsbnd2 37824 iscringd 38027 monotoddzzfi 42933 monotoddzz 42934 frege104 43958 dvgrat 44303 cvgdvgrat 44304 wessf1ornlem 45176 xrlexaddrp 45346 infleinf 45366 dvnmul 45939 dvnprodlem2 45943 fourierdlem41 46144 fourierdlem48 46150 fourierdlem49 46151 fourierdlem51 46153 fourierdlem71 46173 fourierdlem83 46185 fourierdlem97 46199 etransclem2 46232 etransclem46 46276 isomenndlem 46526 ovnsubaddlem1 46566 hoidmvlelem3 46593 vonicclem2 46680 smflimlem1 46767 smflimlem2 46768 smflimlem3 46769 funressndmafv2rn 47219 |
| Copyright terms: Public domain | W3C validator |