![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. See also vtoclALT 3551. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2138. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl.3 | . . 3 ⊢ 𝜑 | |
2 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
4 | vtocl.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3490 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
6 | 3, 5 | exlimiiv 1935 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clel 2811 |
This theorem is referenced by: vtocl2 3552 vtocl3 3553 vtoclb 3554 zfauscl 5302 fnbrfvb 6945 caovcan 7611 findcard2 9164 findcard2OLD 9284 bnd2 9888 kmlem2 10146 axcc2lem 10431 dominf 10440 dcomex 10442 ac4c 10471 ac5 10472 dominfac 10568 pwfseqlem4 10657 grothomex 10824 ramub2 16947 ismred2 17547 utopsnneiplem 23752 dvfsumlem2 25544 plydivlem4 25809 bnj865 33965 bnj1015 34004 gg-dvfsumlem2 35214 poimirlem13 36549 poimirlem14 36550 poimirlem17 36553 poimirlem20 36556 poimirlem25 36561 poimirlem28 36564 poimirlem31 36567 poimirlem32 36568 voliunnfl 36580 volsupnfl 36581 prdsbnd2 36711 iscringd 36914 monotoddzzfi 41729 monotoddzz 41730 frege104 42766 dvgrat 43119 cvgdvgrat 43120 wessf1ornlem 43930 xrlexaddrp 44110 infleinf 44130 dvnmul 44707 dvnprodlem2 44711 fourierdlem41 44912 fourierdlem48 44918 fourierdlem49 44919 fourierdlem51 44921 fourierdlem71 44941 fourierdlem83 44953 fourierdlem97 44967 etransclem2 45000 etransclem46 45044 isomenndlem 45294 ovnsubaddlem1 45334 hoidmvlelem3 45361 vonicclem2 45448 smflimlem1 45535 smflimlem2 45536 smflimlem3 45537 funressndmafv2rn 45979 |
Copyright terms: Public domain | W3C validator |