| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) Remove dependency on ax-10 2144. (Revised by BJ, 29-Nov-2020.) (Proof shortened by SN, 20-Apr-2024.) (Proof shortened by Wolf Lammen, 20-Jun-2025.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocl.3 | . . 3 ⊢ 𝜑 | |
| 3 | vtocl.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 5 | 1, 4 | vtocle 3508 | 1 ⊢ 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: vtocl2 3518 vtocl3 3519 vtoclb 3520 zfauscl 5234 fnbrfvb 6872 caovcan 7550 findcard2 9074 bnd2 9786 kmlem2 10043 axcc2lem 10327 dominf 10336 dcomex 10338 ac4c 10367 ac5 10368 dominfac 10464 grothomex 10720 ramub2 16926 ismred2 17505 utopsnneiplem 24162 dvfsumlem2 25960 dvfsumlem2OLD 25961 plydivlem4 26231 bnj865 34935 bnj1015 34974 tz9.1regs 35130 poimirlem13 37681 poimirlem14 37682 poimirlem17 37685 poimirlem20 37688 poimirlem25 37693 poimirlem28 37696 poimirlem31 37699 poimirlem32 37700 voliunnfl 37712 volsupnfl 37713 prdsbnd2 37843 iscringd 38046 monotoddzzfi 42983 monotoddzz 42984 frege104 44008 dvgrat 44353 cvgdvgrat 44354 permac8prim 45055 wessf1ornlem 45230 xrlexaddrp 45399 infleinf 45418 dvnmul 45989 dvnprodlem2 45993 fourierdlem41 46194 fourierdlem48 46200 fourierdlem49 46201 fourierdlem51 46203 fourierdlem71 46223 fourierdlem83 46235 fourierdlem97 46249 etransclem2 46282 etransclem46 46326 isomenndlem 46576 ovnsubaddlem1 46616 hoidmvlelem3 46643 vonicclem2 46730 smflimlem1 46817 smflimlem2 46818 smflimlem3 46819 funressndmafv2rn 47262 |
| Copyright terms: Public domain | W3C validator |