Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj609 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj609.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj609.2 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) |
bnj609.3 | ⊢ 𝐺 ∈ V |
Ref | Expression |
---|---|
bnj609 | ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj609.2 | . 2 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | |
2 | bnj609.3 | . . 3 ⊢ 𝐺 ∈ V | |
3 | dfsbcq 3718 | . . 3 ⊢ (𝑒 = 𝐺 → ([𝑒 / 𝑓]𝜑 ↔ [𝐺 / 𝑓]𝜑)) | |
4 | fveq1 6773 | . . . 4 ⊢ (𝑒 = 𝐺 → (𝑒‘∅) = (𝐺‘∅)) | |
5 | 4 | eqeq1d 2740 | . . 3 ⊢ (𝑒 = 𝐺 → ((𝑒‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))) |
6 | bnj609.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
7 | 6 | sbcbii 3776 | . . . 4 ⊢ ([𝑒 / 𝑓]𝜑 ↔ [𝑒 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
8 | vex 3436 | . . . . 5 ⊢ 𝑒 ∈ V | |
9 | fveq1 6773 | . . . . . 6 ⊢ (𝑓 = 𝑒 → (𝑓‘∅) = (𝑒‘∅)) | |
10 | 9 | eqeq1d 2740 | . . . . 5 ⊢ (𝑓 = 𝑒 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅))) |
11 | 8, 10 | sbcie 3759 | . . . 4 ⊢ ([𝑒 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅)) |
12 | 7, 11 | bitri 274 | . . 3 ⊢ ([𝑒 / 𝑓]𝜑 ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅)) |
13 | 2, 3, 5, 12 | vtoclb 3502 | . 2 ⊢ ([𝐺 / 𝑓]𝜑 ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
14 | 1, 13 | bitri 274 | 1 ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 ∅c0 4256 ‘cfv 6433 predc-bnj14 32667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: bnj600 32899 bnj908 32911 bnj934 32915 |
Copyright terms: Public domain | W3C validator |