| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj609 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34918. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj609.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj609.2 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) |
| bnj609.3 | ⊢ 𝐺 ∈ V |
| Ref | Expression |
|---|---|
| bnj609 | ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj609.2 | . 2 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | |
| 2 | bnj609.3 | . . 3 ⊢ 𝐺 ∈ V | |
| 3 | dfsbcq 3758 | . . 3 ⊢ (𝑒 = 𝐺 → ([𝑒 / 𝑓]𝜑 ↔ [𝐺 / 𝑓]𝜑)) | |
| 4 | fveq1 6860 | . . . 4 ⊢ (𝑒 = 𝐺 → (𝑒‘∅) = (𝐺‘∅)) | |
| 5 | 4 | eqeq1d 2732 | . . 3 ⊢ (𝑒 = 𝐺 → ((𝑒‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 6 | bnj609.1 | . . . . 5 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 7 | 6 | sbcbii 3813 | . . . 4 ⊢ ([𝑒 / 𝑓]𝜑 ↔ [𝑒 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 8 | vex 3454 | . . . . 5 ⊢ 𝑒 ∈ V | |
| 9 | fveq1 6860 | . . . . . 6 ⊢ (𝑓 = 𝑒 → (𝑓‘∅) = (𝑒‘∅)) | |
| 10 | 9 | eqeq1d 2732 | . . . . 5 ⊢ (𝑓 = 𝑒 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 11 | 8, 10 | sbcie 3798 | . . . 4 ⊢ ([𝑒 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 12 | 7, 11 | bitri 275 | . . 3 ⊢ ([𝑒 / 𝑓]𝜑 ↔ (𝑒‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 13 | 2, 3, 5, 12 | vtoclb 3537 | . 2 ⊢ ([𝐺 / 𝑓]𝜑 ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 ∅c0 4299 ‘cfv 6514 predc-bnj14 34685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-ss 3934 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: bnj600 34916 bnj908 34928 bnj934 34932 |
| Copyright terms: Public domain | W3C validator |