| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 3476 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
| 6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | mpbii 233 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 8 | 4, 7 | exlimi 2217 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
| 10 | 1, 9 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 |
| This theorem is referenced by: vtocl2gf 3551 vtocl3gf 3552 vtoclgaf 3555 elabgf 3653 fsumsplit1 15759 ssiun2sf 32486 subtr 36278 subtr2 36279 supxrgere 45308 supxrgelem 45312 supxrge 45313 fmuldfeqlem1 45559 climsuse 45585 dvnmptdivc 45915 dvmptfprodlem 45921 stoweidlem59 46036 fourierdlem31 46115 sge0fodjrnlem 46393 |
| Copyright terms: Public domain | W3C validator |