MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgf Structured version   Visualization version   GIF version

Theorem vtoclgf 3538
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgf.1 𝑥𝐴
vtoclgf.2 𝑥𝜓
vtoclgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgf.4 𝜑
Assertion
Ref Expression
vtoclgf (𝐴𝑉𝜓)

Proof of Theorem vtoclgf
StepHypRef Expression
1 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtoclgf.1 . . . 4 𝑥𝐴
32issetf 3467 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 vtoclgf.2 . . . 4 𝑥𝜓
5 vtoclgf.4 . . . . 5 𝜑
6 vtoclgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6mpbii 233 . . . 4 (𝑥 = 𝐴𝜓)
84, 7exlimi 2218 . . 3 (∃𝑥 𝑥 = 𝐴𝜓)
93, 8sylbi 217 . 2 (𝐴 ∈ V → 𝜓)
101, 9syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2877  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452
This theorem is referenced by:  vtocl2gf  3541  vtocl3gf  3542  vtoclgaf  3545  elabgf  3644  fsumsplit1  15718  ssiun2sf  32495  subtr  36309  subtr2  36310  supxrgere  45336  supxrgelem  45340  supxrge  45341  fmuldfeqlem1  45587  climsuse  45613  dvnmptdivc  45943  dvmptfprodlem  45949  stoweidlem59  46064  fourierdlem31  46143  sge0fodjrnlem  46421
  Copyright terms: Public domain W3C validator