| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 3481 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
| 6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | mpbii 233 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 8 | 4, 7 | exlimi 2218 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
| 10 | 1, 9 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 |
| This theorem is referenced by: vtocl2gf 3556 vtocl3gf 3557 vtoclgaf 3560 elabgf 3658 fsumsplit1 15766 ssiun2sf 32545 subtr 36337 subtr2 36338 supxrgere 45327 supxrgelem 45331 supxrge 45332 fmuldfeqlem1 45578 climsuse 45604 dvnmptdivc 45934 dvmptfprodlem 45940 stoweidlem59 46055 fourierdlem31 46134 sge0fodjrnlem 46412 |
| Copyright terms: Public domain | W3C validator |