| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 3453 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
| 6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | mpbii 233 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 8 | 4, 7 | exlimi 2220 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
| 10 | 1, 9 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 |
| This theorem is referenced by: vtocl2gf 3523 vtocl3gf 3524 vtoclgaf 3527 elabgf 3625 fsumsplit1 15652 ssiun2sf 32539 subtr 36358 subtr2 36359 supxrgere 45431 supxrgelem 45435 supxrge 45436 fmuldfeqlem1 45681 climsuse 45707 dvnmptdivc 46035 dvmptfprodlem 46041 stoweidlem59 46156 fourierdlem31 46235 sge0fodjrnlem 46513 |
| Copyright terms: Public domain | W3C validator |