Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclgf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclgf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 3446 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | mpbii 232 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
8 | 4, 7 | exlimi 2210 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
9 | 3, 8 | sylbi 216 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
10 | 1, 9 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 |
This theorem is referenced by: vtocl2gf 3508 vtocl3gf 3509 vtoclgaf 3512 elabgf 3605 fsumsplit1 15457 ssiun2sf 30899 subtr 34503 subtr2 34504 supxrgere 42872 supxrgelem 42876 supxrge 42877 fmuldfeqlem1 43123 fprodcnlem 43140 climsuse 43149 dvnmptdivc 43479 dvmptfprodlem 43485 stoweidlem59 43600 fourierdlem31 43679 sge0f1o 43920 sge0fodjrnlem 43954 |
Copyright terms: Public domain | W3C validator |