| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgf.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 3461 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
| 6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | mpbii 233 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 8 | 4, 7 | exlimi 2218 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 9 | 3, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
| 10 | 1, 9 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3446 |
| This theorem is referenced by: vtocl2gf 3535 vtocl3gf 3536 vtoclgaf 3539 elabgf 3638 fsumsplit1 15688 ssiun2sf 32539 subtr 36296 subtr2 36297 supxrgere 45323 supxrgelem 45327 supxrge 45328 fmuldfeqlem1 45574 climsuse 45600 dvnmptdivc 45930 dvmptfprodlem 45936 stoweidlem59 46051 fourierdlem31 46130 sge0fodjrnlem 46408 |
| Copyright terms: Public domain | W3C validator |