Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-2mintru2 Structured version   Visualization version   GIF version

Theorem wl-2mintru2 35399
Description: Using the recursion formula

"(n+1)-mintru-(m+1)" ↔ if-(𝜑, "n-mintru-m" , "n-mintru-(m+1)" )

for "2-mintru-2" (meaning "2 out of 2 inputs are true") by plugging in n = 1, m = 1, and simplifying. See wl-1mintru1 35396 and wl-1mintru2 35397 to see that "1-mintru-1" / "1-mintru-2" evaluate to 𝜒 / respectively.

Negating a "n-mintru2" operation means 'at most one input is true', so all inputs exclude each other mutually. Such an exclusion is expressed by a NAND operation (𝜑𝜓), not by a XOR. Applying this idea here (n = 2) yields the expected NAND in case of a pair of inputs. (Contributed by Wolf Lammen, 10-May-2024.)

Assertion
Ref Expression
wl-2mintru2 (if-(𝜓, 𝜒, ⊥) ↔ (𝜓𝜒))

Proof of Theorem wl-2mintru2
StepHypRef Expression
1 dfifp7 1070 . 2 (if-(𝜓, 𝜒, ⊥) ↔ ((⊥ → 𝜓) → (𝜓𝜒)))
2 falim 1560 . . 3 (⊥ → 𝜓)
32a1bi 366 . 2 ((𝜓𝜒) ↔ ((⊥ → 𝜓) → (𝜓𝜒)))
41, 3bitr4i 281 1 (if-(𝜓, 𝜒, ⊥) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  if-wif 1063  wfal 1555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-tru 1546  df-fal 1556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator