Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-2mintru1 Structured version   Visualization version   GIF version

Theorem wl-2mintru1 35172
Description: Using the recursion formula

"(n+1)-mintru-(m+1)" ↔ if-(𝜑, "n-mintru-m" , "n-mintru-(m+1)" )

for "2-mintru-1" (meaning "at least 1 out of 2 inputs is true") by plugging in n = 1, m = 0, and simplifying. The expression "1-mintru-0" is a base case (meaning at least zero inputs out of 1 are true), evaluating to , and wl-1mintru1 35170 shows "1-mintru-1" is equivalent to the only input.

Negating an "n-mintru1" operation means: All n inputs 𝜑.. 𝜃 are false. This is also conveniently expressed as ¬ (𝜑.. 𝜃), in accordance with the result here. (Contributed by Wolf Lammen, 10-May-2024.)

Assertion
Ref Expression
wl-2mintru1 (if-(𝜓, ⊤, 𝜒) ↔ (𝜓𝜒))

Proof of Theorem wl-2mintru1
StepHypRef Expression
1 dfifp3 1062 . 2 (if-(𝜓, ⊤, 𝜒) ↔ ((𝜓 → ⊤) ∧ (𝜓𝜒)))
2 trud 1549 . . . 4 (𝜓 → ⊤)
32bitru 1548 . . 3 ((𝜓 → ⊤) ↔ ⊤)
43anbi1i 627 . 2 (((𝜓 → ⊤) ∧ (𝜓𝜒)) ↔ (⊤ ∧ (𝜓𝜒)))
5 truan 1550 . 2 ((⊤ ∧ (𝜓𝜒)) ↔ (𝜓𝜒))
61, 4, 53bitri 301 1 (if-(𝜓, ⊤, 𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wo 845  if-wif 1059  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator