Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xorcomb Structured version   Visualization version   GIF version

Theorem wl-3xorcomb 35629
Description: Commutative law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.)
Assertion
Ref Expression
wl-3xorcomb (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓))

Proof of Theorem wl-3xorcomb
StepHypRef Expression
1 wl-3xorcoma 35628 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒))
2 wl-3xorrot 35627 . 2 (hadd(𝜓, 𝜑, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓))
31, 2bitri 274 1 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  haddwhad 1597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-xor 1506  df-tru 1544  df-had 1598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator