Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorcomb | Structured version Visualization version GIF version |
Description: Commutative law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.) |
Ref | Expression |
---|---|
wl-3xorcomb | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorcoma 35762 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) | |
2 | wl-3xorrot 35761 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 haddwhad 1593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-xor 1509 df-tru 1543 df-had 1594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |