Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorcoma | Structured version Visualization version GIF version |
Description: Commutative law for triple xor. Copy of hadcoma 1600. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 17-Dec-2023.) |
Ref | Expression |
---|---|
wl-3xorcoma | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
2 | 1 | bibi1i 339 | . 2 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) |
3 | wl-3xorbi2 35645 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) | |
4 | wl-3xorbi2 35645 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 haddwhad 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-xor 1507 df-tru 1542 df-had 1595 |
This theorem is referenced by: wl-3xorcomb 35650 |
Copyright terms: Public domain | W3C validator |