| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xornot1 | Structured version Visualization version GIF version | ||
| Description: Flipping the first input flips the triple xor. wl-3xorrot 37412 can rotate any input to the front, so flipping any one of them does the same. (Contributed by Wolf Lammen, 1-May-2024.) |
| Ref | Expression |
|---|---|
| wl-3xornot1 | ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, 𝜓, 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-3xorbi 37408 | . 2 ⊢ (hadd(¬ 𝜑, 𝜓, 𝜒) ↔ (¬ 𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 2 | nbbn 383 | . . 3 ⊢ ((¬ 𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 3 | wl-3xorbi 37408 | . . 3 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 4 | 2, 3 | xchbinxr 335 | . 2 ⊢ ((¬ 𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ hadd(𝜑, 𝜓, 𝜒)) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, 𝜓, 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 haddwhad 1592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-xor 1511 df-tru 1542 df-had 1593 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |