Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xornot1 | Structured version Visualization version GIF version |
Description: Flipping the first input flips the triple xor. wl-3xorrot 35575 can rotate any input to the front, so flipping any one of them does the same. (Contributed by Wolf Lammen, 1-May-2024.) |
Ref | Expression |
---|---|
wl-3xornot1 | ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, 𝜓, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-3xorbi 35571 | . 2 ⊢ (hadd(¬ 𝜑, 𝜓, 𝜒) ↔ (¬ 𝜑 ↔ (𝜓 ↔ 𝜒))) | |
2 | nbbn 384 | . . 3 ⊢ ((¬ 𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
3 | wl-3xorbi 35571 | . . 3 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
4 | 2, 3 | xchbinxr 334 | . 2 ⊢ ((¬ 𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ hadd(𝜑, 𝜓, 𝜒)) |
5 | 1, 4 | bitr2i 275 | 1 ⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, 𝜓, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 haddwhad 1595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-xor 1504 df-tru 1542 df-had 1596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |