Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xorrot Structured version   Visualization version   GIF version

Theorem wl-3xorrot 35648
Description: Rotation law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.)
Assertion
Ref Expression
wl-3xorrot (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑))

Proof of Theorem wl-3xorrot
StepHypRef Expression
1 bicom 221 . 2 ((𝜑 ↔ (𝜓𝜒)) ↔ ((𝜓𝜒) ↔ 𝜑))
2 wl-3xorbi 35644 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓𝜒)))
3 wl-3xorbi2 35645 . 2 (hadd(𝜓, 𝜒, 𝜑) ↔ ((𝜓𝜒) ↔ 𝜑))
41, 2, 33bitr4i 303 1 (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  haddwhad 1594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-xor 1507  df-tru 1542  df-had 1595
This theorem is referenced by:  wl-3xorcomb  35650
  Copyright terms: Public domain W3C validator