| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for triple xor. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| wl-3xorrot | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ((𝜓 ↔ 𝜒) ↔ 𝜑)) | |
| 2 | wl-3xorbi 37408 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 3 | wl-3xorbi2 37409 | . 2 ⊢ (hadd(𝜓, 𝜒, 𝜑) ↔ ((𝜓 ↔ 𝜒) ↔ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 haddwhad 1592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-xor 1511 df-tru 1542 df-had 1593 |
| This theorem is referenced by: wl-3xorcomb 37414 |
| Copyright terms: Public domain | W3C validator |