| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorfal | Structured version Visualization version GIF version | ||
| Description: If the first input is false, then triple xor is equivalent to the exclusive disjunction of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 29-Apr-2024.) |
| Ref | Expression |
|---|---|
| wl-3xorfal | ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-df-3xor 37469 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ (𝜓 ⊻ 𝜒), (𝜓 ⊻ 𝜒))) | |
| 2 | ifpfal 1076 | . 2 ⊢ (¬ 𝜑 → (if-(𝜑, ¬ (𝜓 ⊻ 𝜒), (𝜓 ⊻ 𝜒)) ↔ (𝜓 ⊻ 𝜒))) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 if-wif 1063 ⊻ wxo 1511 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-xor 1512 df-tru 1543 df-had 1594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |