| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-3xorbi | Structured version Visualization version GIF version | ||
| Description: Triple xor can be replaced with a triple biconditional. Unlike ⊻, you cannot add more inputs by simply stacking up more biconditionals, and still express an "odd number of inputs". (Contributed by Wolf Lammen, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| wl-3xorbi | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-df3xor2 37470 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
| 2 | df-xor 1512 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) | |
| 3 | xor3 382 | . . 3 ⊢ (¬ (𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) | |
| 4 | xnor 1513 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ⊻ 𝜒)) | |
| 5 | 4 | bibi2i 337 | . . 3 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ⊻ 𝜒))) |
| 6 | 3, 5 | bitr4i 278 | . 2 ⊢ (¬ (𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
| 7 | 1, 2, 6 | 3bitri 297 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-xor 1512 df-tru 1543 df-had 1594 |
| This theorem is referenced by: wl-3xorbi2 37475 wl-3xorrot 37478 wl-3xornot1 37481 |
| Copyright terms: Public domain | W3C validator |