Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xortru Structured version   Visualization version   GIF version

Theorem wl-3xortru 35755
Description: If the first input is true, then triple xor is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 24-Apr-2024.)
Assertion
Ref Expression
wl-3xortru (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ ¬ (𝜓𝜒)))

Proof of Theorem wl-3xortru
StepHypRef Expression
1 wl-df-3xor 35752 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ (𝜓𝜒), (𝜓𝜒)))
2 ifptru 1073 . 2 (𝜑 → (if-(𝜑, ¬ (𝜓𝜒), (𝜓𝜒)) ↔ ¬ (𝜓𝜒)))
31, 2bitrid 282 1 (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ ¬ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  if-wif 1060  wxo 1508  haddwhad 1593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-xor 1509  df-tru 1543  df-had 1594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator