| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3xor3 | Structured version Visualization version GIF version | ||
| Description: Alternative form of wl-df3xor2 37470. Copy of df-had 1594. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 1-May-2024.) |
| Ref | Expression |
|---|---|
| wl-df3xor3 | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-df3xor2 37470 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
| 2 | xorass 1515 | . 2 ⊢ (((𝜑 ⊻ 𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊻ wxo 1511 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-xor 1512 df-tru 1543 df-had 1594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |