Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-df3xor3 Structured version   Visualization version   GIF version

Theorem wl-df3xor3 35641
Description: Alternative form of wl-df3xor2 35640. Copy of df-had 1595. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 1-May-2024.)
Assertion
Ref Expression
wl-df3xor3 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))

Proof of Theorem wl-df3xor3
StepHypRef Expression
1 wl-df3xor2 35640 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓𝜒)))
2 xorass 1511 . 2 (((𝜑𝜓) ⊻ 𝜒) ↔ (𝜑 ⊻ (𝜓𝜒)))
31, 2bitr4i 277 1 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wxo 1506  haddwhad 1594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-xor 1507  df-tru 1542  df-had 1595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator