Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem1 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem1 35663
Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧))

Proof of Theorem wl-ax11-lem1
StepHypRef Expression
1 wl-aetr 35615 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
2 wl-aetr 35615 . . 3 (∀𝑦 𝑦 = 𝑥 → (∀𝑦 𝑦 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
32aecoms 2428 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑦 = 𝑧 → ∀𝑥 𝑥 = 𝑧))
41, 3impbid 211 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 ↔ ∀𝑦 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  wl-ax11-lem8  35670
  Copyright terms: Public domain W3C validator