 Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-aetr Structured version   Visualization version   GIF version

Theorem wl-aetr 34249
 Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-aetr (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))

Proof of Theorem wl-aetr
StepHypRef Expression
1 ax7 1974 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
21al2imi 1779 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
3 axc11 2367 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
42, 3syld 47 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1506 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-10 2080  ax-12 2107  ax-13 2302 This theorem depends on definitions:  df-bi 199  df-an 388  df-ex 1744  df-nf 1748 This theorem is referenced by:  wl-ax11-lem1  34295  wl-ax11-lem3  34297
 Copyright terms: Public domain W3C validator