Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-aetr Structured version   Visualization version   GIF version

Theorem wl-aetr 36905
Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-aetr (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))

Proof of Theorem wl-aetr
StepHypRef Expression
1 ax7 2011 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
21al2imi 1809 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
3 axc11 2423 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
42, 3syld 47 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2163  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778
This theorem is referenced by:  wl-ax11-lem1  36958  wl-ax11-lem3  36960
  Copyright terms: Public domain W3C validator