| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-ax11-lem2 | ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2183 | . . 3 ⊢ (∀𝑢 𝑢 = 𝑦 → 𝑢 = 𝑦) | |
| 2 | aev 2057 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑢 → ∀𝑥 𝑥 = 𝑦) | |
| 3 | pm2.21 123 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑢)) | |
| 4 | 2, 3 | impbid2 226 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦)) |
| 5 | 1, 4 | anim12i 613 | . 2 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦))) |
| 6 | wl-aleq 37536 | . 2 ⊢ (∀𝑥 𝑢 = 𝑦 ↔ (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦))) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: wl-ax11-lem3 37588 |
| Copyright terms: Public domain | W3C validator |