Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem2 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem2 33853
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
Distinct variable group:   𝑥,𝑢

Proof of Theorem wl-ax11-lem2
StepHypRef Expression
1 sp 2217 . . 3 (∀𝑢 𝑢 = 𝑦𝑢 = 𝑦)
2 aev 2152 . . . 4 (∀𝑥 𝑥 = 𝑢 → ∀𝑥 𝑥 = 𝑦)
3 pm2.21 121 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑢))
42, 3impbid2 218 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦))
51, 4anim12i 607 . 2 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦)))
6 wl-aleq 33812 . 2 (∀𝑥 𝑢 = 𝑦 ↔ (𝑢 = 𝑦 ∧ (∀𝑥 𝑥 = 𝑢 ↔ ∀𝑥 𝑥 = 𝑦)))
75, 6sylibr 226 1 ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → ∀𝑥 𝑢 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wal 1651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-12 2213  ax-13 2377
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880
This theorem is referenced by:  wl-ax11-lem3  33854
  Copyright terms: Public domain W3C validator