Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem7 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem7 37545
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem7 (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑))

Proof of Theorem wl-ax11-lem7
StepHypRef Expression
1 nfna1 2153 . 2 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2119.28 2229 1 (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  wl-ax11-lem8  37546
  Copyright terms: Public domain W3C validator