Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem7 | Structured version Visualization version GIF version |
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem7 | ⊢ (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfna1 2153 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | 1 | 19.28 2228 | 1 ⊢ (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 |
This theorem is referenced by: wl-ax11-lem8 35304 |
Copyright terms: Public domain | W3C validator |