Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-ax11-lem7 Structured version   Visualization version   GIF version

Theorem wl-ax11-lem7 35303
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.)
Assertion
Ref Expression
wl-ax11-lem7 (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑))

Proof of Theorem wl-ax11-lem7
StepHypRef Expression
1 nfna1 2153 . 2 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2119.28 2228 1 (∀𝑥(¬ ∀𝑥 𝑥 = 𝑦𝜑) ↔ (¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786
This theorem is referenced by:  wl-ax11-lem8  35304
  Copyright terms: Public domain W3C validator