MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2154
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2159 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2153 . 2 𝑥𝑥𝜑
21nfn 1858 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1536  wnf 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-10 2143
This theorem depends on definitions:  df-bi 210  df-or 845  df-ex 1782  df-nf 1786
This theorem is referenced by:  dvelimhw  2358  nfeqf  2391  equs5  2475  sb4b  2491  nfsb2  2504  nfsb2ALT  2579  wl-equsb3  34956  wl-sbcom2d-lem1  34959  wl-euequf  34974  wl-ax11-lem3  34983  wl-ax11-lem4  34984  wl-ax11-lem6  34986  wl-ax11-lem7  34987
  Copyright terms: Public domain W3C validator