MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2142
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2147 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2141 . 2 𝑥𝑥𝜑
21nfn 1853 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1532  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-10 2130
This theorem depends on definitions:  df-bi 206  df-or 846  df-ex 1775  df-nf 1779
This theorem is referenced by:  dvelimhw  2336  nfeqf  2375  equs5  2454  sb4b  2469  nfsb2  2477  ab0OLD  4380  wl-equsb3  37251  wl-sbcom2d-lem1  37254  wl-euequf  37269  wl-ax11-lem3  37282  wl-ax11-lem4  37283  wl-ax11-lem6  37285  wl-ax11-lem7  37286
  Copyright terms: Public domain W3C validator