MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2150
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2155 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2149 . 2 𝑥𝑥𝜑
21nfn 1861 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1540  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-10 2138
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1783  df-nf 1787
This theorem is referenced by:  dvelimhw  2342  nfeqf  2381  equs5  2460  sb4b  2475  nfsb2  2483  ab0OLD  4376  wl-equsb3  36421  wl-sbcom2d-lem1  36424  wl-euequf  36439  wl-ax11-lem3  36449  wl-ax11-lem4  36450  wl-ax11-lem6  36452  wl-ax11-lem7  36453
  Copyright terms: Public domain W3C validator