MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2153
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2158 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥𝜑
21nfn 1856 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  dvelimhw  2351  nfeqf  2389  equs5  2468  sb4b  2483  nfsb2  2491  ab0OLD  4403  dvelimalcased  35051  dvelimexcased  35053  wl-equsb3  37510  wl-sbcom2d-lem1  37513  wl-euequf  37528  wl-ax11-lem3  37541  wl-ax11-lem4  37542  wl-ax11-lem6  37544  wl-ax11-lem7  37545
  Copyright terms: Public domain W3C validator