MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2146
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2150 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2145 . 2 𝑥𝑥𝜑
21nfn 1902 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1599  wnf 1827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-10 2135
This theorem depends on definitions:  df-bi 199  df-or 837  df-ex 1824  df-nf 1828
This theorem is referenced by:  dvelimhw  2314  nfeqf  2345  equs5  2426  nfsb2  2436  wl-equsb3  33932  wl-sbcom2d-lem1  33936  wl-euequf  33950  wl-ax11-lem3  33958  wl-ax11-lem4  33959  wl-ax11-lem6  33961  wl-ax11-lem7  33962
  Copyright terms: Public domain W3C validator