![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version |
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2158 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
Ref | Expression |
---|---|
nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfn 1856 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: dvelimhw 2351 nfeqf 2389 equs5 2468 sb4b 2483 nfsb2 2491 ab0OLD 4403 dvelimalcased 35051 dvelimexcased 35053 wl-equsb3 37510 wl-sbcom2d-lem1 37513 wl-euequf 37528 wl-ax11-lem3 37541 wl-ax11-lem4 37542 wl-ax11-lem6 37544 wl-ax11-lem7 37545 |
Copyright terms: Public domain | W3C validator |