| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version | ||
| Description: A convenience theorem particularly designed to remove dependencies on ax-11 2160 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
| Ref | Expression |
|---|---|
| nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2154 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfn 1858 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: dvelimhw 2345 nfeqf 2381 equs5 2460 sb4b 2475 nfsb2 2483 dvelimalcased 35087 dvelimexcased 35089 wl-equsb3 37600 wl-sbcom2d-lem1 37603 wl-euequf 37618 |
| Copyright terms: Public domain | W3C validator |