MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2150
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2155 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2149 . 2 𝑥𝑥𝜑
21nfn 1855 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-10 2139
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1777  df-nf 1781
This theorem is referenced by:  dvelimhw  2346  nfeqf  2384  equs5  2463  sb4b  2478  nfsb2  2486  dvelimalcased  35068  dvelimexcased  35070  wl-equsb3  37537  wl-sbcom2d-lem1  37540  wl-euequf  37555  wl-ax11-lem3  37568  wl-ax11-lem4  37569  wl-ax11-lem6  37571  wl-ax11-lem7  37572
  Copyright terms: Public domain W3C validator