![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version |
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2150 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
Ref | Expression |
---|---|
nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2145 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfn 1902 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1599 Ⅎwnf 1827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-10 2135 |
This theorem depends on definitions: df-bi 199 df-or 837 df-ex 1824 df-nf 1828 |
This theorem is referenced by: dvelimhw 2314 nfeqf 2345 equs5 2426 nfsb2 2436 wl-equsb3 33932 wl-sbcom2d-lem1 33936 wl-euequf 33950 wl-ax11-lem3 33958 wl-ax11-lem4 33959 wl-ax11-lem6 33961 wl-ax11-lem7 33962 |
Copyright terms: Public domain | W3C validator |