Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version |
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2154 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
Ref | Expression |
---|---|
nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2148 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfn 1860 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: dvelimhw 2343 nfeqf 2381 equs5 2460 sb4b 2475 nfsb2 2487 ab0OLD 4309 wl-equsb3 35711 wl-sbcom2d-lem1 35714 wl-euequf 35729 wl-ax11-lem3 35738 wl-ax11-lem4 35739 wl-ax11-lem6 35741 wl-ax11-lem7 35742 |
Copyright terms: Public domain | W3C validator |