MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfna1 Structured version   Visualization version   GIF version

Theorem nfna1 2089
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2093 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.)
Assertion
Ref Expression
nfna1 𝑥 ¬ ∀𝑥𝜑

Proof of Theorem nfna1
StepHypRef Expression
1 nfa1 2088 . 2 𝑥𝑥𝜑
21nfn 1819 1 𝑥 ¬ ∀𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1505  wnf 1746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-10 2079
This theorem depends on definitions:  df-bi 199  df-or 834  df-ex 1743  df-nf 1747
This theorem is referenced by:  dvelimhw  2279  nfeqf  2311  equs5  2397  nfsb2  2443  nfsb2ALT  2527  wl-equsb3  34233  wl-sbcom2d-lem1  34236  wl-euequf  34251  wl-ax11-lem3  34260  wl-ax11-lem4  34261  wl-ax11-lem6  34263  wl-ax11-lem7  34264
  Copyright terms: Public domain W3C validator