![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version |
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2155 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
Ref | Expression |
---|---|
nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2149 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfn 1861 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: dvelimhw 2342 nfeqf 2381 equs5 2460 sb4b 2475 nfsb2 2483 ab0OLD 4376 wl-equsb3 36421 wl-sbcom2d-lem1 36424 wl-euequf 36439 wl-ax11-lem3 36449 wl-ax11-lem4 36450 wl-ax11-lem6 36452 wl-ax11-lem7 36453 |
Copyright terms: Public domain | W3C validator |