Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfna1 | Structured version Visualization version GIF version |
Description: A convenience theorem particularly designed to remove dependencies on ax-11 2156 in conjunction with distinctors. (Contributed by Wolf Lammen, 2-Sep-2018.) |
Ref | Expression |
---|---|
nfna1 | ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfn 1861 | 1 ⊢ Ⅎ𝑥 ¬ ∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: dvelimhw 2345 nfeqf 2381 equs5 2460 sb4b 2475 nfsb2 2487 ab0OLD 4306 wl-equsb3 35638 wl-sbcom2d-lem1 35641 wl-euequf 35656 wl-ax11-lem3 35665 wl-ax11-lem4 35666 wl-ax11-lem6 35668 wl-ax11-lem7 35669 |
Copyright terms: Public domain | W3C validator |