![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem6 | Structured version Visualization version GIF version |
Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019.) |
Ref | Expression |
---|---|
wl-ax11-lem6 | ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-wl-11v 37104 | . . 3 ⊢ (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 → ∀𝑥∀𝑢[𝑢 / 𝑦]𝜑) | |
2 | ax-wl-11v 37104 | . . 3 ⊢ (∀𝑥∀𝑢[𝑢 / 𝑦]𝜑 → ∀𝑢∀𝑥[𝑢 / 𝑦]𝜑) | |
3 | 1, 2 | impbii 208 | . 2 ⊢ (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑢[𝑢 / 𝑦]𝜑) |
4 | nfna1 2141 | . . . . 5 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
5 | wl-ax11-lem3 37107 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥∀𝑢 𝑢 = 𝑦) | |
6 | 4, 5 | nfan1 2188 | . . . 4 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦) |
7 | wl-ax11-lem5 37109 | . . . . 5 ⊢ (∀𝑢 𝑢 = 𝑦 → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) | |
8 | 7 | adantl 480 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦) → (∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑦𝜑)) |
9 | 6, 8 | albid 2210 | . . 3 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑢 𝑢 = 𝑦) → (∀𝑥∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
10 | 9 | ancoms 457 | . 2 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑥∀𝑢[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
11 | 3, 10 | bitrid 282 | 1 ⊢ ((∀𝑢 𝑢 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑢∀𝑥[𝑢 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2166 ax-13 2365 ax-wl-11v 37104 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 |
This theorem is referenced by: wl-ax11-lem10 37114 |
Copyright terms: Public domain | W3C validator |