| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax11-lem9 | Structured version Visualization version GIF version | ||
| Description: The easy part when 𝑥 coincides with 𝑦. (Contributed by Wolf Lammen, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-ax11-lem9 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 2 | 1 | dral1 2442 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜑)) |
| 3 | 2 | aecoms 2431 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 ↔ ∀𝑦𝜑)) |
| 4 | 3 | dral1 2442 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
| 5 | 4 | aecoms 2431 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦∀𝑥𝜑 ↔ ∀𝑥∀𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |