MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Structured version   Visualization version   GIF version

Theorem dral1 2439
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker dral1v 2367 if possible. (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2154. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Proof of Theorem dral1
StepHypRef Expression
1 nfa1 2148 . . 3 𝑥𝑥 𝑥 = 𝑦
2 dral1.1 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2albid 2215 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
4 axc11 2430 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
5 axc11r 2366 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓))
64, 5impbid 211 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓))
73, 6bitrd 278 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  drex1  2441  drnf1  2443  axc16gALT  2494  sb9  2523  ralcom2  3290  axpownd  10357  wl-dral1d  35690  wl-ax11-lem5  35740  wl-ax11-lem8  35743  wl-ax11-lem9  35744
  Copyright terms: Public domain W3C validator