| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dral1 | Structured version Visualization version GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker dral1v 2369 if possible. (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2160. (Revised by Wolf Lammen, 6-Sep-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dral1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dral1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2154 | . . 3 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | |
| 2 | dral1.1 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | albid 2225 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| 4 | axc11 2430 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓)) | |
| 5 | axc11r 2368 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓)) | |
| 6 | 4, 5 | impbid 212 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓)) |
| 7 | 3, 6 | bitrd 279 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: drex1 2441 drnf1 2443 axc16gALT 2490 sb9 2519 ralcom2 3343 axpownd 10492 axnulg 35119 wl-dral1d 37575 wl-ax11-lem5 37633 wl-ax11-lem8 37636 wl-ax11-lem9 37637 |
| Copyright terms: Public domain | W3C validator |