Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-df3xor2 Structured version   Visualization version   GIF version

Theorem wl-df3xor2 35567
Description: Alternative definition of wl-df-3xor 35566, using triple exclusive disjunction, or XOR3. You can add more input by appending each one with a . Copy of hadass 1599. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 1-May-2024.)
Assertion
Ref Expression
wl-df3xor2 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓𝜒)))

Proof of Theorem wl-df3xor2
StepHypRef Expression
1 ifpn 1070 . 2 (if-(𝜑, ¬ (𝜓𝜒), (𝜓𝜒)) ↔ if-(¬ 𝜑, (𝜓𝜒), ¬ (𝜓𝜒)))
2 wl-df-3xor 35566 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ (𝜓𝜒), (𝜓𝜒)))
3 df-xor 1504 . . 3 ((𝜑 ⊻ (𝜓𝜒)) ↔ ¬ (𝜑 ↔ (𝜓𝜒)))
4 nbbn 384 . . 3 ((¬ 𝜑 ↔ (𝜓𝜒)) ↔ ¬ (𝜑 ↔ (𝜓𝜒)))
5 ifpdfbi 1067 . . 3 ((¬ 𝜑 ↔ (𝜓𝜒)) ↔ if-(¬ 𝜑, (𝜓𝜒), ¬ (𝜓𝜒)))
63, 4, 53bitr2i 298 . 2 ((𝜑 ⊻ (𝜓𝜒)) ↔ if-(¬ 𝜑, (𝜓𝜒), ¬ (𝜓𝜒)))
71, 2, 63bitr4i 302 1 (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1059  wxo 1503  haddwhad 1595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-xor 1504  df-tru 1542  df-had 1596
This theorem is referenced by:  wl-df3xor3  35568  wl-3xorbi  35571
  Copyright terms: Public domain W3C validator