| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-df3xor2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of wl-df-3xor 37428, using triple exclusive disjunction, or XOR3. You can add more input by appending each one with a ⊻. Copy of hadass 1596. (Contributed by Mario Carneiro, 4-Sep-2016.) df-had redefined. (Revised by Wolf Lammen, 1-May-2024.) |
| Ref | Expression |
|---|---|
| wl-df3xor2 | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpn 1073 | . 2 ⊢ (if-(𝜑, ¬ (𝜓 ⊻ 𝜒), (𝜓 ⊻ 𝜒)) ↔ if-(¬ 𝜑, (𝜓 ⊻ 𝜒), ¬ (𝜓 ⊻ 𝜒))) | |
| 2 | wl-df-3xor 37428 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ (𝜓 ⊻ 𝜒), (𝜓 ⊻ 𝜒))) | |
| 3 | df-xor 1511 | . . 3 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) | |
| 4 | nbbn 383 | . . 3 ⊢ ((¬ 𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ⊻ 𝜒))) | |
| 5 | ifpdfbi 1070 | . . 3 ⊢ ((¬ 𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ if-(¬ 𝜑, (𝜓 ⊻ 𝜒), ¬ (𝜓 ⊻ 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr2i 299 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ⊻ 𝜒)) ↔ if-(¬ 𝜑, (𝜓 ⊻ 𝜒), ¬ (𝜓 ⊻ 𝜒))) |
| 7 | 1, 2, 6 | 3bitr4i 303 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1062 ⊻ wxo 1510 haddwhad 1592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-xor 1511 df-tru 1542 df-had 1593 |
| This theorem is referenced by: wl-df3xor3 37430 wl-3xorbi 37433 |
| Copyright terms: Public domain | W3C validator |