Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfrexex Structured version   Visualization version   GIF version

Theorem wl-dfrexex 34239
Description: Alternate definition of the restricted existential quantification (df-wl-rex 34235), according to the pattern given in df-wl-ral 34225. (Contributed by Wolf Lammen, 25-May-2023.)
Assertion
Ref Expression
wl-dfrexex (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦𝐴 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem wl-dfrexex
StepHypRef Expression
1 df-wl-ral 34225 . . 3 (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑦(𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))
21notbii 312 . 2 (¬ ∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ¬ ∀𝑦(𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))
3 df-wl-rex 34235 . 2 (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑)
4 alinexa 1805 . . . . . 6 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
54imbi2i 328 . . . . 5 ((𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦𝐴 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
65albii 1782 . . . 4 (∀𝑦(𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦𝐴 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
7 alinexa 1805 . . . 4 (∀𝑦(𝑦𝐴 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ∃𝑦(𝑦𝐴 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
86, 7bitri 267 . . 3 (∀𝑦(𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ¬ ∃𝑦(𝑦𝐴 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
98con2bii 350 . 2 (∃𝑦(𝑦𝐴 ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ∀𝑦(𝑦𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))
102, 3, 93bitr4i 295 1 (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦𝐴 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505  wex 1742  wcel 2048  wl-ral 34220  wl-rex 34221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772
This theorem depends on definitions:  df-bi 199  df-an 388  df-ex 1743  df-wl-ral 34225  df-wl-rex 34235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator