![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfrexex | Structured version Visualization version GIF version |
Description: Alternate definition of the restricted existential quantification (df-wl-rex 34235), according to the pattern given in df-wl-ral 34225. (Contributed by Wolf Lammen, 25-May-2023.) |
Ref | Expression |
---|---|
wl-dfrexex | ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wl-ral 34225 | . . 3 ⊢ (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) | |
2 | 1 | notbii 312 | . 2 ⊢ (¬ ∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ¬ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
3 | df-wl-rex 34235 | . 2 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑) | |
4 | alinexa 1805 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
5 | 4 | imbi2i 328 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦 ∈ 𝐴 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
6 | 5 | albii 1782 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
7 | alinexa 1805 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
8 | 6, 7 | bitri 267 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
9 | 8 | con2bii 350 | . 2 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) |
10 | 2, 3, 9 | 3bitr4i 295 | 1 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 ∃wex 1742 ∈ wcel 2048 ∀wl-ral 34220 ∃wl-rex 34221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-wl-ral 34225 df-wl-rex 34235 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |