![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dfrexv | Structured version Visualization version GIF version |
Description: Alternate definition of restricted universal quantification (df-wl-rex 34320) when 𝑥 and 𝐴 are disjoint. (Contributed by Wolf Lammen, 25-May-2023.) |
Ref | Expression |
---|---|
wl-dfrexv | ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-dfralv 34315 | . . 3 ⊢ (∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
2 | 1 | notbii 312 | . 2 ⊢ (¬ ∀(𝑥 : 𝐴) ¬ 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) |
3 | df-wl-rex 34320 | . 2 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ¬ ∀(𝑥 : 𝐴) ¬ 𝜑) | |
4 | exnalimn 1807 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4i 295 | 1 ⊢ (∃(𝑥 : 𝐴)𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1506 ∃wex 1743 ∈ wcel 2051 ∀wl-ral 34305 ∃wl-rex 34306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-11 2094 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-clel 2841 df-wl-ral 34310 df-wl-rex 34320 |
This theorem is referenced by: wl-dfreuv 34332 |
Copyright terms: Public domain | W3C validator |