![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euae | Structured version Visualization version GIF version |
Description: Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023.) |
Ref | Expression |
---|---|
wl-euae | ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2640 | . 2 ⊢ (∃!𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) | |
2 | extru 2079 | . . 3 ⊢ ∃𝑥⊤ | |
3 | 2 | biantrur 526 | . 2 ⊢ (∃*𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) |
4 | wl-moae 33839 | . 2 ⊢ (∃*𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) | |
5 | 1, 3, 4 | 3bitr2i 291 | 1 ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∀wal 1654 ⊤wtru 1657 ∃wex 1878 ∃*wmo 2603 ∃!weu 2639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1660 df-ex 1879 df-mo 2605 df-eu 2640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |