| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euae | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| wl-euae | ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2569 | . 2 ⊢ (∃!𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) | |
| 2 | extru 1975 | . . 3 ⊢ ∃𝑥⊤ | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (∃*𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) |
| 4 | wl-moae 37517 | . 2 ⊢ (∃*𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) | |
| 5 | 1, 3, 4 | 3bitr2i 299 | 1 ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |