Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-euae Structured version   Visualization version   GIF version

Theorem wl-euae 35676
Description: Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023.)
Assertion
Ref Expression
wl-euae (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem wl-euae
StepHypRef Expression
1 df-eu 2569 . 2 (∃!𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤))
2 extru 1979 . . 3 𝑥
32biantrur 531 . 2 (∃*𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤))
4 wl-moae 35675 . 2 (∃*𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
51, 3, 43bitr2i 299 1 (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wal 1537  wtru 1540  wex 1782  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-mo 2540  df-eu 2569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator