MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf6 Structured version   Visualization version   GIF version

Theorem nf6 2278
Description: An alternate definition of df-nf 1785. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))

Proof of Theorem nf6
StepHypRef Expression
1 df-nf 1785 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2146 . . 3 𝑥𝑥𝜑
3219.21 2199 . 2 (∀𝑥(∃𝑥𝜑𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 278 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-ex 1781  df-nf 1785
This theorem is referenced by:  eusv2nf  5393  xfree  31965
  Copyright terms: Public domain W3C validator