MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf6 Structured version   Visualization version   GIF version

Theorem nf6 2257
Description: An alternate definition of df-nf 1766. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf6 (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))

Proof of Theorem nf6
StepHypRef Expression
1 df-nf 1766 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2120 . . 3 𝑥𝑥𝜑
3219.21 2172 . 2 (∀𝑥(∃𝑥𝜑𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
41, 3bitr4i 279 1 (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1520  wex 1761  wnf 1765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-10 2112  ax-12 2141
This theorem depends on definitions:  df-bi 208  df-ex 1762  df-nf 1766
This theorem is referenced by:  eusv2nf  5187  xfree  29912
  Copyright terms: Public domain W3C validator