MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfinf Structured version   Visualization version   GIF version

Theorem zfinf 9327
Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfinf 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfinf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-inf 9326 . 2 𝑥(𝑦𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)))
2 elequ1 2115 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
3 elequ1 2115 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
43anbi1d 629 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤𝑧𝑧𝑥) ↔ (𝑦𝑧𝑧𝑥)))
54exbidv 1925 . . . . . 6 (𝑤 = 𝑦 → (∃𝑧(𝑤𝑧𝑧𝑥) ↔ ∃𝑧(𝑦𝑧𝑧𝑥)))
62, 5imbi12d 344 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
76cbvalvw 2040 . . . 4 (∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
87anbi2i 622 . . 3 ((𝑦𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
98exbii 1851 . 2 (∃𝑥(𝑦𝑥 ∧ ∀𝑤(𝑤𝑥 → ∃𝑧(𝑤𝑧𝑧𝑥))) ↔ ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
101, 9mpbi 229 1 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-inf 9326
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axinf2  9328  axinfndlem1  10292
  Copyright terms: Public domain W3C validator