|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > zfinf | Structured version Visualization version GIF version | ||
| Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.) | 
| Ref | Expression | 
|---|---|
| zfinf | ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-inf 9679 | . 2 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
| 2 | elequ1 2114 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | elequ1 2114 | . . . . . . . 8 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
| 4 | 3 | anbi1d 631 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 5 | 4 | exbidv 1920 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 6 | 2, 5 | imbi12d 344 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 7 | 6 | cbvalvw 2034 | . . . 4 ⊢ (∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 8 | 7 | anbi2i 623 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 9 | 8 | exbii 1847 | . 2 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 10 | 1, 9 | mpbi 230 | 1 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-inf 9679 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: axinf2 9681 axinfndlem1 10646 | 
| Copyright terms: Public domain | W3C validator |