| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | zfinf 9680 | . . . . 5
⊢
∃𝑤(𝑦 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) | 
| 2 |  | nfnae 2438 | . . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 | 
| 3 |  | nfnae 2438 | . . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 | 
| 4 | 2, 3 | nfan 1898 | . . . . . 6
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 5 |  | nfcvf 2931 | . . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | 
| 6 | 5 | adantr 480 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦) | 
| 7 |  | nfcvd 2905 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤) | 
| 8 | 6, 7 | nfeld 2916 | . . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 ∈ 𝑤) | 
| 9 |  | nfnae 2438 | . . . . . . . . 9
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 | 
| 10 |  | nfnae 2438 | . . . . . . . . 9
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑧 | 
| 11 | 9, 10 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 12 |  | nfnae 2438 | . . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 | 
| 13 |  | nfnae 2438 | . . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 | 
| 14 | 12, 13 | nfan 1898 | . . . . . . . . . 10
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 15 |  | nfcvf 2931 | . . . . . . . . . . . . 13
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑧) | 
| 16 | 15 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧) | 
| 17 | 6, 16 | nfeld 2916 | . . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 ∈ 𝑧) | 
| 18 | 16, 7 | nfeld 2916 | . . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 ∈ 𝑤) | 
| 19 | 17, 18 | nfand 1896 | . . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) | 
| 20 | 14, 19 | nfexd 2328 | . . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) | 
| 21 | 8, 20 | nfimd 1893 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) | 
| 22 | 11, 21 | nfald 2327 | . . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) | 
| 23 | 8, 22 | nfand 1896 | . . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)))) | 
| 24 |  | simpr 484 | . . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥) | 
| 25 | 24 | eleq2d 2826 | . . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) | 
| 26 |  | nfcvd 2905 | . . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦𝑤) | 
| 27 |  | nfcvf2 2932 | . . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) | 
| 28 | 27 | adantr 480 | . . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦𝑥) | 
| 29 | 26, 28 | nfeqd 2915 | . . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦 𝑤 = 𝑥) | 
| 30 | 11, 29 | nfan1 2199 | . . . . . . . . 9
⊢
Ⅎ𝑦((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) | 
| 31 |  | nfcvd 2905 | . . . . . . . . . . . . 13
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑤) | 
| 32 |  | nfcvf2 2932 | . . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧𝑥) | 
| 33 | 32 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑥) | 
| 34 | 31, 33 | nfeqd 2915 | . . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥) | 
| 35 | 14, 34 | nfan1 2199 | . . . . . . . . . . 11
⊢
Ⅎ𝑧((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) | 
| 36 |  | elequ2 2122 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | 
| 37 | 36 | anbi2d 630 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 38 | 37 | adantl 481 | . . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 39 | 35, 38 | exbid 2222 | . . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | 
| 40 | 25, 39 | imbi12d 344 | . . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 41 | 30, 40 | albid 2221 | . . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 42 | 25, 41 | anbi12d 632 | . . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))))) | 
| 43 | 42 | ex 412 | . . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑦 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))))) | 
| 44 | 4, 23, 43 | cbvexd 2412 | . . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑦 ∈ 𝑤 ∧ ∀𝑦(𝑦 ∈ 𝑤 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))))) | 
| 45 | 1, 44 | mpbii 233 | . . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | 
| 46 | 45 | a1d 25 | . . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))))) | 
| 47 | 46 | ex 412 | . 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))))) | 
| 48 |  | nd1 10628 | . . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | 
| 49 | 48 | pm2.21d 121 | . 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))))) | 
| 50 |  | nd2 10629 | . . 3
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | 
| 51 | 50 | pm2.21d 121 | . 2
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))))) | 
| 52 | 47, 49, 51 | pm2.61ii 183 | 1
⊢
(∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |