MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinfndlem1 Structured version   Visualization version   GIF version

Theorem axinfndlem1 10016
Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.)
Assertion
Ref Expression
axinfndlem1 (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
Distinct variable group:   𝑦,𝑧

Proof of Theorem axinfndlem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 zfinf 9086 . . . . 5 𝑤(𝑦𝑤 ∧ ∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤)))
2 nfnae 2445 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
3 nfnae 2445 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑧
42, 3nfan 1900 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
5 nfcvf 2981 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
65adantr 484 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑦)
7 nfcvd 2956 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑤)
86, 7nfeld 2966 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦𝑤)
9 nfnae 2445 . . . . . . . . 9 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
10 nfnae 2445 . . . . . . . . 9 𝑦 ¬ ∀𝑥 𝑥 = 𝑧
119, 10nfan 1900 . . . . . . . 8 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
12 nfnae 2445 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
13 nfnae 2445 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑧
1412, 13nfan 1900 . . . . . . . . . 10 𝑧(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
15 nfcvf 2981 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑧𝑥𝑧)
1615adantl 485 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑧)
176, 16nfeld 2966 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦𝑧)
1816, 7nfeld 2966 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧𝑤)
1917, 18nfand 1898 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦𝑧𝑧𝑤))
2014, 19nfexd 2337 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧(𝑦𝑧𝑧𝑤))
218, 20nfimd 1895 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤)))
2211, 21nfald 2336 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤)))
238, 22nfand 1898 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑦𝑤 ∧ ∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤))))
24 simpr 488 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥)
2524eleq2d 2875 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑦𝑤𝑦𝑥))
26 nfcvd 2956 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑦𝑤)
27 nfcvf2 2982 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
2827adantr 484 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑦𝑥)
2926, 28nfeqd 2965 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑦 𝑤 = 𝑥)
3011, 29nfan1 2198 . . . . . . . . 9 𝑦((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥)
31 nfcvd 2956 . . . . . . . . . . . . 13 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑤)
32 nfcvf2 2982 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑧𝑧𝑥)
3332adantl 485 . . . . . . . . . . . . 13 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑥)
3431, 33nfeqd 2965 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥)
3514, 34nfan1 2198 . . . . . . . . . . 11 𝑧((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥)
36 elequ2 2126 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (𝑧𝑤𝑧𝑥))
3736anbi2d 631 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝑦𝑧𝑧𝑤) ↔ (𝑦𝑧𝑧𝑥)))
3837adantl 485 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦𝑧𝑧𝑤) ↔ (𝑦𝑧𝑧𝑥)))
3935, 38exbid 2223 . . . . . . . . . 10 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑧(𝑦𝑧𝑧𝑤) ↔ ∃𝑧(𝑦𝑧𝑧𝑥)))
4025, 39imbi12d 348 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤)) ↔ (𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
4130, 40albid 2222 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤)) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
4225, 41anbi12d 633 . . . . . . 7 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑦𝑤 ∧ ∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
4342ex 416 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑦𝑤 ∧ ∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))))
444, 23, 43cbvexd 2418 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑦𝑤 ∧ ∀𝑦(𝑦𝑤 → ∃𝑧(𝑦𝑧𝑧𝑤))) ↔ ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
451, 44mpbii 236 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
4645a1d 25 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
4746ex 416 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))))
48 nd1 9998 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦𝑧)
4948pm2.21d 121 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
50 nd2 9999 . . 3 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑥 𝑦𝑧)
5150pm2.21d 121 . 2 (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))))
5247, 49, 51pm2.61ii 186 1 (∀𝑥 𝑦𝑧 → ∃𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  wex 1781  wnfc 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-reg 9040  ax-inf 9085
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-sn 4526  df-pr 4528
This theorem is referenced by:  axinfnd  10017
  Copyright terms: Public domain W3C validator