New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > peano1 | Unicode version |
Description: Cardinal zero is a finite cardinal. Theorem X.1.4 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
peano1 | 0c Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nnc 4380 | . . . 4 Nn 0c 1c | |
2 | 1 | eleq2i 2417 | . . 3 0c Nn 0c 0c 1c |
3 | 0cex 4393 | . . . 4 0c | |
4 | 3 | elintab 3938 | . . 3 0c 0c 1c 0c 1c 0c |
5 | 2, 4 | bitri 240 | . 2 0c Nn 0c 1c 0c |
6 | simpl 443 | . 2 0c 1c 0c | |
7 | 5, 6 | mpgbir 1550 | 1 0c Nn |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wal 1540 wcel 1710 cab 2339 wral 2615 cint 3927 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-int 3928 df-0c 4378 df-nnc 4380 |
This theorem is referenced by: 1cnnc 4409 peano5 4410 nnc0suc 4413 0fin 4424 ltfinirr 4458 0cminle 4462 ltfinp1 4463 lefinlteq 4464 lefinrflx 4468 ncfinraise 4482 ncfinlower 4484 tfin0c 4498 tfin1c 4500 0ceven 4506 sfin01 4529 vfin1cltv 4548 0cnelphi 4598 ncssfin 6152 nclenn 6250 nncdiv3 6278 nnc3n3p1 6279 nchoicelem17 6306 frecxp 6315 frec0 6322 |
Copyright terms: Public domain | W3C validator |