New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcnul1 | Unicode version |
Description: Cardinal addition with the empty set. Theorem X.1.20, corollary 1 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.) |
Ref | Expression |
---|---|
addcnul1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3564 | . 2 | |
2 | rex0 3563 | . . . . 5 | |
3 | 2 | a1i 10 | . . . 4 |
4 | 3 | nrex 2716 | . . 3 |
5 | eladdc 4398 | . . 3 | |
6 | 4, 5 | mtbir 290 | . 2 |
7 | 1, 6 | mpgbir 1550 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wa 358 wceq 1642 wcel 1710 wrex 2615 cun 3207 cin 3208 c0 3550 cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-nul 3551 df-addc 4378 |
This theorem is referenced by: addcnnul 4453 nulge 4456 tfinltfinlem1 4500 eventfin 4517 oddtfin 4518 |
Copyright terms: Public domain | W3C validator |