New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcnul1 | GIF version |
Description: Cardinal addition with the empty set. Theorem X.1.20, corollary 1 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.) |
Ref | Expression |
---|---|
addcnul1 | ⊢ (A +c ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 3565 | . 2 ⊢ ((A +c ∅) = ∅ ↔ ∀a ¬ a ∈ (A +c ∅)) | |
2 | rex0 3564 | . . . . 5 ⊢ ¬ ∃c ∈ ∅ ((b ∩ c) = ∅ ∧ a = (b ∪ c)) | |
3 | 2 | a1i 10 | . . . 4 ⊢ (b ∈ A → ¬ ∃c ∈ ∅ ((b ∩ c) = ∅ ∧ a = (b ∪ c))) |
4 | 3 | nrex 2717 | . . 3 ⊢ ¬ ∃b ∈ A ∃c ∈ ∅ ((b ∩ c) = ∅ ∧ a = (b ∪ c)) |
5 | eladdc 4399 | . . 3 ⊢ (a ∈ (A +c ∅) ↔ ∃b ∈ A ∃c ∈ ∅ ((b ∩ c) = ∅ ∧ a = (b ∪ c))) | |
6 | 4, 5 | mtbir 290 | . 2 ⊢ ¬ a ∈ (A +c ∅) |
7 | 1, 6 | mpgbir 1550 | 1 ⊢ (A +c ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-nul 3552 df-addc 4379 |
This theorem is referenced by: addcnnul 4454 nulge 4457 tfinltfinlem1 4501 eventfin 4518 oddtfin 4519 |
Copyright terms: Public domain | W3C validator |