Proof of Theorem ceqsrex2v
Step | Hyp | Ref
| Expression |
1 | | anass 630 |
. . . . . 6
⊢ (((x = A ∧ y = B) ∧ φ) ↔ (x = A ∧ (y = B ∧ φ))) |
2 | 1 | rexbii 2640 |
. . . . 5
⊢ (∃y ∈ D ((x = A ∧ y = B) ∧ φ) ↔ ∃y ∈ D (x = A ∧ (y = B ∧ φ))) |
3 | | r19.42v 2766 |
. . . . 5
⊢ (∃y ∈ D (x = A ∧ (y = B ∧ φ)) ↔ (x = A ∧ ∃y ∈ D (y = B ∧ φ))) |
4 | 2, 3 | bitri 240 |
. . . 4
⊢ (∃y ∈ D ((x = A ∧ y = B) ∧ φ) ↔ (x = A ∧ ∃y ∈ D (y = B ∧ φ))) |
5 | 4 | rexbii 2640 |
. . 3
⊢ (∃x ∈ C ∃y ∈ D ((x = A ∧ y = B) ∧ φ) ↔ ∃x ∈ C (x = A ∧ ∃y ∈ D (y = B ∧ φ))) |
6 | | ceqsrex2v.1 |
. . . . . 6
⊢ (x = A →
(φ ↔ ψ)) |
7 | 6 | anbi2d 684 |
. . . . 5
⊢ (x = A →
((y = B
∧ φ)
↔ (y = B ∧ ψ))) |
8 | 7 | rexbidv 2636 |
. . . 4
⊢ (x = A →
(∃y
∈ D
(y = B
∧ φ)
↔ ∃y ∈ D (y = B ∧ ψ))) |
9 | 8 | ceqsrexv 2973 |
. . 3
⊢ (A ∈ C → (∃x ∈ C (x = A ∧ ∃y ∈ D (y = B ∧ φ)) ↔ ∃y ∈ D (y = B ∧ ψ))) |
10 | 5, 9 | syl5bb 248 |
. 2
⊢ (A ∈ C → (∃x ∈ C ∃y ∈ D ((x = A ∧ y = B) ∧ φ) ↔ ∃y ∈ D (y = B ∧ ψ))) |
11 | | ceqsrex2v.2 |
. . 3
⊢ (y = B →
(ψ ↔ χ)) |
12 | 11 | ceqsrexv 2973 |
. 2
⊢ (B ∈ D → (∃y ∈ D (y = B ∧ ψ) ↔
χ)) |
13 | 10, 12 | sylan9bb 680 |
1
⊢ ((A ∈ C ∧ B ∈ D) → (∃x ∈ C ∃y ∈ D ((x = A ∧ y = B) ∧ φ) ↔ χ)) |