NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tz6.12-2 Unicode version

Theorem tz6.12-2 5346
Description: Function value when is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by set.mm contributors, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-2
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12-2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fv3 5341 . 2
2 vex 2862 . . . . . 6
3 elequ1 1713 . . . . . . . . 9
43anbi1d 685 . . . . . . . 8
54exbidv 1626 . . . . . . 7
65anbi1d 685 . . . . . 6
72, 6elab 2985 . . . . 5
87simprbi 450 . . . 4
98con3i 127 . . 3
109eq0rdv 3585 . 2
111, 10syl5eq 2397 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358  wex 1541   wceq 1642   wcel 1710  weu 2204  cab 2339  c0 3550   class class class wbr 4639  cfv 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-br 4640  df-fv 4795
This theorem is referenced by:  tz6.12i  5348  ndmfv  5349  nfunsn  5353  fvfullfun  5864
  Copyright terms: Public domain W3C validator