| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > setswith | Unicode version | ||
| Description: Two ways to express the
class of all sets that contain |
| Ref | Expression |
|---|---|
| setswith |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4112 |
. . . . . . 7
| |
| 2 | opkeq1 4060 |
. . . . . . . 8
| |
| 3 | 2 | eleq1d 2419 |
. . . . . . 7
|
| 4 | 1, 3 | rexsn 3769 |
. . . . . 6
|
| 5 | vex 2863 |
. . . . . . 7
| |
| 6 | elssetkg 4270 |
. . . . . . 7
| |
| 7 | 5, 6 | mpan2 652 |
. . . . . 6
|
| 8 | 4, 7 | syl5rbb 249 |
. . . . 5
|
| 9 | 8 | abbidv 2468 |
. . . 4
|
| 10 | df-imak 4190 |
. . . 4
| |
| 11 | 9, 10 | syl6eqr 2403 |
. . 3
|
| 12 | iftrue 3669 |
. . 3
| |
| 13 | 11, 12 | eqtr4d 2388 |
. 2
|
| 14 | elex 2868 |
. . . . . 6
| |
| 15 | 14 | con3i 127 |
. . . . 5
|
| 16 | 15 | alrimiv 1631 |
. . . 4
|
| 17 | ab0 3570 |
. . . 4
| |
| 18 | 16, 17 | sylibr 203 |
. . 3
|
| 19 | iffalse 3670 |
. . 3
| |
| 20 | 18, 19 | eqtr4d 2388 |
. 2
|
| 21 | 13, 20 | pm2.61i 156 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 df-sn 3742 df-pr 3743 df-opk 4059 df-imak 4190 df-ssetk 4194 |
| This theorem is referenced by: setswithex 4323 |
| Copyright terms: Public domain | W3C validator |