NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  setswith Unicode version

Theorem setswith 4322
Description: Two ways to express the class of all sets that contain . (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
setswith Sk k
Distinct variable group:   ,

Proof of Theorem setswith
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 snex 4112 . . . . . . 7
2 opkeq1 4060 . . . . . . . 8
32eleq1d 2419 . . . . . . 7 Sk Sk
41, 3rexsn 3769 . . . . . 6 Sk Sk
5 vex 2863 . . . . . . 7
6 elssetkg 4270 . . . . . . 7 Sk
75, 6mpan2 652 . . . . . 6 Sk
84, 7syl5rbb 249 . . . . 5 Sk
98abbidv 2468 . . . 4 Sk
10 df-imak 4190 . . . 4 Sk k Sk
119, 10syl6eqr 2403 . . 3 Sk k
12 iftrue 3669 . . 3 Sk k Sk k
1311, 12eqtr4d 2388 . 2 Sk k
14 elex 2868 . . . . . 6
1514con3i 127 . . . . 5
1615alrimiv 1631 . . . 4
17 ab0 3570 . . . 4
1816, 17sylibr 203 . . 3
19 iffalse 3670 . . 3 Sk k
2018, 19eqtr4d 2388 . 2 Sk k
2113, 20pm2.61i 156 1 Sk k
Colors of variables: wff setvar class
Syntax hints:   wn 3   wb 176  wal 1540   wceq 1642   wcel 1710  cab 2339  wrex 2616  cvv 2860  c0 3551  cif 3663  csn 3738  copk 4058  kcimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-if 3664  df-sn 3742  df-pr 3743  df-opk 4059  df-imak 4190  df-ssetk 4194
This theorem is referenced by:  setswithex  4323
  Copyright terms: Public domain W3C validator