New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dff13 | Unicode version |
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by set.mm contributors, 29-Oct-1996.) |
Ref | Expression |
---|---|
dff13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff12 5258 | . 2 | |
2 | ffn 5224 | . . . 4 | |
3 | breldm 4912 | . . . . . . . . . . . . . 14 | |
4 | fndm 5183 | . . . . . . . . . . . . . . 15 | |
5 | 4 | eleq2d 2420 | . . . . . . . . . . . . . 14 |
6 | 3, 5 | syl5ib 210 | . . . . . . . . . . . . 13 |
7 | breldm 4912 | . . . . . . . . . . . . . 14 | |
8 | 4 | eleq2d 2420 | . . . . . . . . . . . . . 14 |
9 | 7, 8 | syl5ib 210 | . . . . . . . . . . . . 13 |
10 | 6, 9 | anim12d 546 | . . . . . . . . . . . 12 |
11 | 10 | pm4.71rd 616 | . . . . . . . . . . 11 |
12 | eqcom 2355 | . . . . . . . . . . . . . . 15 | |
13 | fnbrfvb 5359 | . . . . . . . . . . . . . . 15 | |
14 | 12, 13 | syl5bb 248 | . . . . . . . . . . . . . 14 |
15 | eqcom 2355 | . . . . . . . . . . . . . . 15 | |
16 | fnbrfvb 5359 | . . . . . . . . . . . . . . 15 | |
17 | 15, 16 | syl5bb 248 | . . . . . . . . . . . . . 14 |
18 | 14, 17 | bi2anan9 843 | . . . . . . . . . . . . 13 |
19 | 18 | anandis 803 | . . . . . . . . . . . 12 |
20 | 19 | pm5.32da 622 | . . . . . . . . . . 11 |
21 | 11, 20 | bitr4d 247 | . . . . . . . . . 10 |
22 | 21 | imbi1d 308 | . . . . . . . . 9 |
23 | impexp 433 | . . . . . . . . 9 | |
24 | 22, 23 | syl6bb 252 | . . . . . . . 8 |
25 | 24 | albidv 1625 | . . . . . . 7 |
26 | 19.21v 1890 | . . . . . . . 8 | |
27 | 19.23v 1891 | . . . . . . . . . 10 | |
28 | fvex 5340 | . . . . . . . . . . . 12 | |
29 | 28 | eqvinc 2967 | . . . . . . . . . . 11 |
30 | 29 | imbi1i 315 | . . . . . . . . . 10 |
31 | 27, 30 | bitr4i 243 | . . . . . . . . 9 |
32 | 31 | imbi2i 303 | . . . . . . . 8 |
33 | 26, 32 | bitri 240 | . . . . . . 7 |
34 | 25, 33 | syl6bb 252 | . . . . . 6 |
35 | 34 | 2albidv 1627 | . . . . 5 |
36 | breq1 4643 | . . . . . . . 8 | |
37 | 36 | mo4 2237 | . . . . . . 7 |
38 | 37 | albii 1566 | . . . . . 6 |
39 | alcom 1737 | . . . . . 6 | |
40 | alcom 1737 | . . . . . . 7 | |
41 | 40 | albii 1566 | . . . . . 6 |
42 | 38, 39, 41 | 3bitri 262 | . . . . 5 |
43 | r2al 2652 | . . . . 5 | |
44 | 35, 42, 43 | 3bitr4g 279 | . . . 4 |
45 | 2, 44 | syl 15 | . . 3 |
46 | 45 | pm5.32i 618 | . 2 |
47 | 1, 46 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 wmo 2205 wral 2615 class class class wbr 4640 cdm 4773 wfn 4777 wf 4778 wf1 4779 cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fv 4796 |
This theorem is referenced by: dff13f 5473 f1fveq 5474 dff1o6 5476 |
Copyright terms: Public domain | W3C validator |