New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfoprab2 | Unicode version |
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by set.mm contributors, 12-Mar-1995.) |
Ref | Expression |
---|---|
dfoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1741 | . . . 4 | |
2 | exrot4 1745 | . . . . 5 | |
3 | an12 772 | . . . . . . . 8 | |
4 | 3 | exbii 1582 | . . . . . . 7 |
5 | vex 2863 | . . . . . . . . 9 | |
6 | vex 2863 | . . . . . . . . 9 | |
7 | 5, 6 | opex 4589 | . . . . . . . 8 |
8 | opeq1 4579 | . . . . . . . . . 10 | |
9 | 8 | eqeq2d 2364 | . . . . . . . . 9 |
10 | 9 | anbi1d 685 | . . . . . . . 8 |
11 | 7, 10 | ceqsexv 2895 | . . . . . . 7 |
12 | 4, 11 | bitri 240 | . . . . . 6 |
13 | 12 | 3exbii 1584 | . . . . 5 |
14 | 2, 13 | bitri 240 | . . . 4 |
15 | 19.42vv 1907 | . . . . 5 | |
16 | 15 | 2exbii 1583 | . . . 4 |
17 | 1, 14, 16 | 3bitr3i 266 | . . 3 |
18 | 17 | abbii 2466 | . 2 |
19 | df-oprab 5529 | . 2 | |
20 | df-opab 4624 | . 2 | |
21 | 18, 19, 20 | 3eqtr4i 2383 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 cab 2339 cop 4562 copab 4623 coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-oprab 5529 |
This theorem is referenced by: cbvoprab1 5568 cbvoprab12 5570 cbvoprab3 5572 dmoprab 5575 rnoprab 5577 ssoprab2i 5581 resoprab 5582 funoprabg 5584 fnov 5592 ov6g 5601 mpt2mptx 5709 dfswap3 5729 |
Copyright terms: Public domain | W3C validator |