NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfoprab2 Unicode version

Theorem dfoprab2 5559
Description: Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by set.mm contributors, 12-Mar-1995.)
Assertion
Ref Expression
dfoprab2
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,,)

Proof of Theorem dfoprab2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 excom 1741 . . . 4
2 exrot4 1745 . . . . 5
3 an12 772 . . . . . . . 8
43exbii 1582 . . . . . . 7
5 vex 2863 . . . . . . . . 9
6 vex 2863 . . . . . . . . 9
75, 6opex 4589 . . . . . . . 8
8 opeq1 4579 . . . . . . . . . 10
98eqeq2d 2364 . . . . . . . . 9
109anbi1d 685 . . . . . . . 8
117, 10ceqsexv 2895 . . . . . . 7
124, 11bitri 240 . . . . . 6
13123exbii 1584 . . . . 5
142, 13bitri 240 . . . 4
15 19.42vv 1907 . . . . 5
16152exbii 1583 . . . 4
171, 14, 163bitr3i 266 . . 3
1817abbii 2466 . 2
19 df-oprab 5529 . 2
20 df-opab 4624 . 2
2118, 19, 203eqtr4i 2383 1
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   wceq 1642  cab 2339  cop 4562  copab 4623  coprab 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-oprab 5529
This theorem is referenced by:  cbvoprab1  5568  cbvoprab12  5570  cbvoprab3  5572  dmoprab  5575  rnoprab  5577  ssoprab2i  5581  resoprab  5582  funoprabg  5584  fnov  5592  ov6g  5601  mpt2mptx  5709  dfswap3  5729
  Copyright terms: Public domain W3C validator