| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfpw12 | Unicode version | ||
| Description: Alternate expression for unit power classes. (Contributed by SF, 26-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| dfpw12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpw1 4145 | 
. . 3
 | |
| 2 | vex 2863 | 
. . . . 5
 | |
| 3 | 2 | elimakv 4261 | 
. . . 4
 | 
| 4 | vex 2863 | 
. . . . . . 7
 | |
| 5 | opkelsikg 4265 | 
. . . . . . 7
 | |
| 6 | 4, 2, 5 | mp2an 653 | 
. . . . . 6
 | 
| 7 | 6 | exbii 1582 | 
. . . . 5
 | 
| 8 | exrot3 1744 | 
. . . . 5
 | |
| 9 | 7, 8 | bitr4i 243 | 
. . . 4
 | 
| 10 | df-3an 936 | 
. . . . . . . . 9
 | |
| 11 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 12 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 13 | 11, 12 | opkelxpk 4249 | 
. . . . . . . . . 10
 | 
| 14 | 13 | anbi2i 675 | 
. . . . . . . . 9
 | 
| 15 | an4 797 | 
. . . . . . . . 9
 | |
| 16 | 10, 14, 15 | 3bitri 262 | 
. . . . . . . 8
 | 
| 17 | 16 | 2exbii 1583 | 
. . . . . . 7
 | 
| 18 | 19.41vv 1902 | 
. . . . . . 7
 | |
| 19 | sneq 3745 | 
. . . . . . . . . . . 12
 | |
| 20 | eqeq12 2365 | 
. . . . . . . . . . . 12
 | |
| 21 | 19, 20 | sylan2 460 | 
. . . . . . . . . . 11
 | 
| 22 | eleq1 2413 | 
. . . . . . . . . . . 12
 | |
| 23 | 22 | adantl 452 | 
. . . . . . . . . . 11
 | 
| 24 | 21, 23 | anbi12d 691 | 
. . . . . . . . . 10
 | 
| 25 | 2, 12, 24 | spc2ev 2948 | 
. . . . . . . . 9
 | 
| 26 | 25 | pm4.71ri 614 | 
. . . . . . . 8
 | 
| 27 | ancom 437 | 
. . . . . . . 8
 | |
| 28 | 26, 27 | bitr3i 242 | 
. . . . . . 7
 | 
| 29 | 17, 18, 28 | 3bitri 262 | 
. . . . . 6
 | 
| 30 | 29 | exbii 1582 | 
. . . . 5
 | 
| 31 | df-rex 2621 | 
. . . . 5
 | |
| 32 | 30, 31 | bitr4i 243 | 
. . . 4
 | 
| 33 | 3, 9, 32 | 3bitri 262 | 
. . 3
 | 
| 34 | 1, 33 | bitr4i 243 | 
. 2
 | 
| 35 | 34 | eqriv 2350 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-imak 4190 df-sik 4193 | 
| This theorem is referenced by: pw1exg 4303 | 
| Copyright terms: Public domain | W3C validator |