New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfpw12 | Unicode version |
Description: Alternate expression for unit power classes. (Contributed by SF, 26-Jan-2015.) |
Ref | Expression |
---|---|
dfpw12 | 1 SIk k k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw1 4144 | . . 3 1 | |
2 | vex 2862 | . . . . 5 | |
3 | 2 | elimakv 4260 | . . . 4 SIk k k SIk k |
4 | vex 2862 | . . . . . . 7 | |
5 | opkelsikg 4264 | . . . . . . 7 SIk k k | |
6 | 4, 2, 5 | mp2an 653 | . . . . . 6 SIk k k |
7 | 6 | exbii 1582 | . . . . 5 SIk k k |
8 | exrot3 1744 | . . . . 5 k k | |
9 | 7, 8 | bitr4i 243 | . . . 4 SIk k k |
10 | df-3an 936 | . . . . . . . . 9 k k | |
11 | vex 2862 | . . . . . . . . . . 11 | |
12 | vex 2862 | . . . . . . . . . . 11 | |
13 | 11, 12 | opkelxpk 4248 | . . . . . . . . . 10 k |
14 | 13 | anbi2i 675 | . . . . . . . . 9 k |
15 | an4 797 | . . . . . . . . 9 | |
16 | 10, 14, 15 | 3bitri 262 | . . . . . . . 8 k |
17 | 16 | 2exbii 1583 | . . . . . . 7 k |
18 | 19.41vv 1902 | . . . . . . 7 | |
19 | sneq 3744 | . . . . . . . . . . . 12 | |
20 | eqeq12 2365 | . . . . . . . . . . . 12 | |
21 | 19, 20 | sylan2 460 | . . . . . . . . . . 11 |
22 | eleq1 2413 | . . . . . . . . . . . 12 | |
23 | 22 | adantl 452 | . . . . . . . . . . 11 |
24 | 21, 23 | anbi12d 691 | . . . . . . . . . 10 |
25 | 2, 12, 24 | spc2ev 2947 | . . . . . . . . 9 |
26 | 25 | pm4.71ri 614 | . . . . . . . 8 |
27 | ancom 437 | . . . . . . . 8 | |
28 | 26, 27 | bitr3i 242 | . . . . . . 7 |
29 | 17, 18, 28 | 3bitri 262 | . . . . . 6 k |
30 | 29 | exbii 1582 | . . . . 5 k |
31 | df-rex 2620 | . . . . 5 | |
32 | 30, 31 | bitr4i 243 | . . . 4 k |
33 | 3, 9, 32 | 3bitri 262 | . . 3 SIk k k |
34 | 1, 33 | bitr4i 243 | . 2 1 SIk k k |
35 | 34 | eqriv 2350 | 1 1 SIk k k |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 wrex 2615 cvv 2859 csn 3737 copk 4057 1 cpw1 4135 k cxpk 4174 kcimak 4179 SIk csik 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-xpk 4185 df-imak 4189 df-sik 4192 |
This theorem is referenced by: pw1exg 4302 |
Copyright terms: Public domain | W3C validator |