Step | Hyp | Ref
| Expression |
1 | | elpw1 4145 |
. . 3
⊢ (x ∈ ℘1A ↔ ∃y ∈ A x = {y}) |
2 | | vex 2863 |
. . . . 5
⊢ x ∈
V |
3 | 2 | elimakv 4261 |
. . . 4
⊢ (x ∈ ( SIk (A ×k A) “k V) ↔ ∃z⟪z,
x⟫ ∈ SIk (A ×k A)) |
4 | | vex 2863 |
. . . . . . 7
⊢ z ∈
V |
5 | | opkelsikg 4265 |
. . . . . . 7
⊢ ((z ∈ V ∧ x ∈ V) → (⟪z, x⟫
∈ SIk (A ×k A) ↔ ∃w∃y(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)))) |
6 | 4, 2, 5 | mp2an 653 |
. . . . . 6
⊢ (⟪z, x⟫
∈ SIk (A ×k A) ↔ ∃w∃y(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A))) |
7 | 6 | exbii 1582 |
. . . . 5
⊢ (∃z⟪z,
x⟫ ∈ SIk (A ×k A) ↔ ∃z∃w∃y(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A))) |
8 | | exrot3 1744 |
. . . . 5
⊢ (∃y∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ∃z∃w∃y(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A))) |
9 | 7, 8 | bitr4i 243 |
. . . 4
⊢ (∃z⟪z,
x⟫ ∈ SIk (A ×k A) ↔ ∃y∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A))) |
10 | | df-3an 936 |
. . . . . . . . 9
⊢ ((z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ((z =
{w} ∧
x = {y}) ∧
⟪w, y⟫ ∈
(A ×k A))) |
11 | | vex 2863 |
. . . . . . . . . . 11
⊢ w ∈
V |
12 | | vex 2863 |
. . . . . . . . . . 11
⊢ y ∈
V |
13 | 11, 12 | opkelxpk 4249 |
. . . . . . . . . 10
⊢ (⟪w, y⟫
∈ (A
×k A) ↔
(w ∈
A ∧
y ∈
A)) |
14 | 13 | anbi2i 675 |
. . . . . . . . 9
⊢ (((z = {w} ∧ x = {y}) ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ((z =
{w} ∧
x = {y}) ∧ (w ∈ A ∧ y ∈ A))) |
15 | | an4 797 |
. . . . . . . . 9
⊢ (((z = {w} ∧ x = {y}) ∧ (w ∈ A ∧ y ∈ A)) ↔ ((z =
{w} ∧
w ∈
A) ∧
(x = {y} ∧ y ∈ A))) |
16 | 10, 14, 15 | 3bitri 262 |
. . . . . . . 8
⊢ ((z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ((z =
{w} ∧
w ∈
A) ∧
(x = {y} ∧ y ∈ A))) |
17 | 16 | 2exbii 1583 |
. . . . . . 7
⊢ (∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ∃z∃w((z = {w} ∧ w ∈ A) ∧ (x = {y} ∧ y ∈ A))) |
18 | | 19.41vv 1902 |
. . . . . . 7
⊢ (∃z∃w((z = {w} ∧ w ∈ A) ∧ (x = {y} ∧ y ∈ A)) ↔ (∃z∃w(z = {w} ∧ w ∈ A) ∧ (x = {y} ∧ y ∈ A))) |
19 | | sneq 3745 |
. . . . . . . . . . . 12
⊢ (w = y →
{w} = {y}) |
20 | | eqeq12 2365 |
. . . . . . . . . . . 12
⊢ ((z = x ∧ {w} =
{y}) → (z = {w} ↔
x = {y})) |
21 | 19, 20 | sylan2 460 |
. . . . . . . . . . 11
⊢ ((z = x ∧ w = y) → (z =
{w} ↔ x = {y})) |
22 | | eleq1 2413 |
. . . . . . . . . . . 12
⊢ (w = y →
(w ∈
A ↔ y ∈ A)) |
23 | 22 | adantl 452 |
. . . . . . . . . . 11
⊢ ((z = x ∧ w = y) → (w
∈ A
↔ y ∈ A)) |
24 | 21, 23 | anbi12d 691 |
. . . . . . . . . 10
⊢ ((z = x ∧ w = y) → ((z =
{w} ∧
w ∈
A) ↔ (x = {y} ∧ y ∈ A))) |
25 | 2, 12, 24 | spc2ev 2948 |
. . . . . . . . 9
⊢ ((x = {y} ∧ y ∈ A) →
∃z∃w(z = {w} ∧ w ∈ A)) |
26 | 25 | pm4.71ri 614 |
. . . . . . . 8
⊢ ((x = {y} ∧ y ∈ A) ↔
(∃z∃w(z = {w} ∧ w ∈ A) ∧ (x = {y} ∧ y ∈ A))) |
27 | | ancom 437 |
. . . . . . . 8
⊢ ((x = {y} ∧ y ∈ A) ↔
(y ∈
A ∧
x = {y})) |
28 | 26, 27 | bitr3i 242 |
. . . . . . 7
⊢ ((∃z∃w(z = {w} ∧ w ∈ A) ∧ (x = {y} ∧ y ∈ A)) ↔ (y
∈ A ∧ x = {y})) |
29 | 17, 18, 28 | 3bitri 262 |
. . . . . 6
⊢ (∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ (y
∈ A ∧ x = {y})) |
30 | 29 | exbii 1582 |
. . . . 5
⊢ (∃y∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ∃y(y ∈ A ∧ x = {y})) |
31 | | df-rex 2621 |
. . . . 5
⊢ (∃y ∈ A x = {y} ↔
∃y(y ∈ A ∧ x = {y})) |
32 | 30, 31 | bitr4i 243 |
. . . 4
⊢ (∃y∃z∃w(z = {w} ∧ x = {y} ∧
⟪w, y⟫ ∈
(A ×k A)) ↔ ∃y ∈ A x = {y}) |
33 | 3, 9, 32 | 3bitri 262 |
. . 3
⊢ (x ∈ ( SIk (A ×k A) “k V) ↔ ∃y ∈ A x = {y}) |
34 | 1, 33 | bitr4i 243 |
. 2
⊢ (x ∈ ℘1A ↔ x ∈ ( SIk (A ×k A) “k V)) |
35 | 34 | eqriv 2350 |
1
⊢ ℘1A = ( SIk (A ×k A) “k V) |