Step | Hyp | Ref
| Expression |
1 | | eq0 3565 |
. 2
⊢ (((A ∖ B) ∩ C) =
∅ ↔ ∀x ¬
x ∈
((A ∖
B) ∩ C)) |
2 | | iman 413 |
. . . . . 6
⊢ ((x ∈ C → (x
∈ A
→ x ∈ B)) ↔
¬ (x ∈ C ∧ ¬ (x ∈ A →
x ∈
B))) |
3 | | elin 3220 |
. . . . . . . 8
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ (x ∈ (A ∖ B) ∧ x ∈ C)) |
4 | | eldif 3222 |
. . . . . . . . 9
⊢ (x ∈ (A ∖ B) ↔ (x
∈ A ∧ ¬ x ∈ B)) |
5 | 4 | anbi1i 676 |
. . . . . . . 8
⊢ ((x ∈ (A ∖ B) ∧ x ∈ C) ↔ ((x
∈ A ∧ ¬ x ∈ B) ∧ x ∈ C)) |
6 | 3, 5 | bitri 240 |
. . . . . . 7
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ ((x ∈ A ∧ ¬ x ∈ B) ∧ x ∈ C)) |
7 | | ancom 437 |
. . . . . . 7
⊢ ((x ∈ C ∧ (x ∈ A ∧ ¬ x ∈ B)) ↔ ((x
∈ A ∧ ¬ x ∈ B) ∧ x ∈ C)) |
8 | | annim 414 |
. . . . . . . 8
⊢ ((x ∈ A ∧ ¬ x ∈ B) ↔ ¬ (x ∈ A → x ∈ B)) |
9 | 8 | anbi2i 675 |
. . . . . . 7
⊢ ((x ∈ C ∧ (x ∈ A ∧ ¬ x ∈ B)) ↔ (x
∈ C ∧ ¬ (x ∈ A →
x ∈
B))) |
10 | 6, 7, 9 | 3bitr2i 264 |
. . . . . 6
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ (x ∈ C ∧ ¬ (x ∈ A →
x ∈
B))) |
11 | 2, 10 | xchbinxr 302 |
. . . . 5
⊢ ((x ∈ C → (x
∈ A
→ x ∈ B)) ↔
¬ x ∈
((A ∖
B) ∩ C)) |
12 | | ax-2 7 |
. . . . 5
⊢ ((x ∈ C → (x
∈ A
→ x ∈ B)) →
((x ∈
C → x ∈ A) → (x
∈ C
→ x ∈ B))) |
13 | 11, 12 | sylbir 204 |
. . . 4
⊢ (¬ x ∈ ((A ∖ B) ∩ C)
→ ((x ∈ C →
x ∈
A) → (x ∈ C → x ∈ B))) |
14 | 13 | al2imi 1561 |
. . 3
⊢ (∀x ¬
x ∈
((A ∖
B) ∩ C) → (∀x(x ∈ C → x ∈ A) →
∀x(x ∈ C →
x ∈
B))) |
15 | | dfss2 3263 |
. . 3
⊢ (C ⊆ A ↔ ∀x(x ∈ C → x ∈ A)) |
16 | | dfss2 3263 |
. . 3
⊢ (C ⊆ B ↔ ∀x(x ∈ C → x ∈ B)) |
17 | 14, 15, 16 | 3imtr4g 261 |
. 2
⊢ (∀x ¬
x ∈
((A ∖
B) ∩ C) → (C
⊆ A
→ C ⊆ B)) |
18 | 1, 17 | sylbi 187 |
1
⊢ (((A ∖ B) ∩ C) =
∅ → (C ⊆ A → C ⊆ B)) |