New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difin2 | Unicode version |
Description: Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
difin2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3267 | . . . . 5 | |
2 | 1 | pm4.71d 615 | . . . 4 |
3 | 2 | anbi1d 685 | . . 3 |
4 | eldif 3221 | . . 3 | |
5 | elin 3219 | . . . 4 | |
6 | eldif 3221 | . . . . 5 | |
7 | 6 | anbi1i 676 | . . . 4 |
8 | ancom 437 | . . . . 5 | |
9 | anass 630 | . . . . 5 | |
10 | 8, 9 | bitr4i 243 | . . . 4 |
11 | 5, 7, 10 | 3bitri 262 | . . 3 |
12 | 3, 4, 11 | 3bitr4g 279 | . 2 |
13 | 12 | eqrdv 2351 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wceq 1642 wcel 1710 cdif 3206 cin 3208 wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |