Step | Hyp | Ref
| Expression |
1 | | simp2 956 |
. . . 4
  NC Spac
  
↑c 0c NC Spac
    |
2 | | spacval 6283 |
. . . . 5
 NC Spac  
Clos1          NC NC 2c ↑c
      |
3 | 2 | 3ad2ant1 976 |
. . . 4
  NC Spac
  
↑c 0c NC Spac  
Clos1    
     NC NC 2c ↑c
      |
4 | 1, 3 | eleqtrd 2429 |
. . 3
  NC Spac
  
↑c 0c NC
Clos1    
     NC NC 2c ↑c
      |
5 | | spacssnc 6285 |
. . . . . 6
 NC Spac  
NC  |
6 | 5 | sselda 3274 |
. . . . 5
  NC Spac
   NC  |
7 | 6 | 3adant3 975 |
. . . 4
  NC Spac
  
↑c 0c NC NC  |
8 | | simp3 957 |
. . . . 5
  NC Spac
  
↑c 0c NC  ↑c
0c
NC  |
9 | | 2nnc 6168 |
. . . . . 6
2c
Nn |
10 | | ceclnn1 6190 |
. . . . . 6
 2c Nn NC 
↑c 0c NC 2c ↑c 
NC  |
11 | 9, 10 | mp3an1 1264 |
. . . . 5
  NC  ↑c
0c
NC 2c
↑c  NC  |
12 | 7, 8, 11 | syl2anc 642 |
. . . 4
  NC Spac
  
↑c 0c NC 2c ↑c 
NC  |
13 | | eqidd 2354 |
. . . 4
  NC Spac
  
↑c 0c NC 2c ↑c 
2c
↑c    |
14 | | ovex 5552 |
. . . . . 6
2c
↑c   |
15 | | eleq1 2413 |
. . . . . . . 8
 
NC
NC   |
16 | | oveq2 5532 |
. . . . . . . . 9
 2c
↑c  2c ↑c
   |
17 | 16 | eqeq2d 2364 |
. . . . . . . 8
 
2c
↑c  2c ↑c     |
18 | 15, 17 | 3anbi13d 1254 |
. . . . . . 7
  
NC NC 2c ↑c
   NC NC 2c ↑c
     |
19 | | eleq1 2413 |
. . . . . . . 8
 2c ↑c   NC 2c
↑c  NC   |
20 | | eqeq1 2359 |
. . . . . . . 8
 2c ↑c   2c ↑c  2c ↑c 
2c
↑c     |
21 | 19, 20 | 3anbi23d 1255 |
. . . . . . 7
 2c ↑c    NC NC 2c ↑c
   NC 2c ↑c 
NC 2c ↑c 
2c
↑c      |
22 | | eqid 2353 |
. . . . . . 7
  
  NC NC 2c ↑c
     
  NC NC 2c ↑c
    |
23 | 18, 21, 22 | brabg 4707 |
. . . . . 6
  Spac   2c
↑c          NC NC 2c ↑c
   2c ↑c   NC 2c ↑c 
NC 2c ↑c 
2c
↑c      |
24 | 14, 23 | mpan2 652 |
. . . . 5
 Spac          NC NC 2c ↑c
   2c ↑c   NC 2c ↑c 
NC 2c ↑c 
2c
↑c      |
25 | 24 | 3ad2ant2 977 |
. . . 4
  NC Spac
  
↑c 0c NC        NC NC 2c ↑c
   2c ↑c   NC 2c ↑c 
NC 2c ↑c 
2c
↑c      |
26 | 7, 12, 13, 25 | mpbir3and 1135 |
. . 3
  NC Spac
  
↑c 0c NC    
  NC NC 2c ↑c
   2c ↑c    |
27 | | eqid 2353 |
. . . 4
Clos1          NC NC 2c ↑c
   
Clos1    
     NC NC 2c ↑c
     |
28 | 27 | clos1conn 5880 |
. . 3
  Clos1          NC NC 2c ↑c
          NC NC
2c
↑c    2c ↑c   2c
↑c 
Clos1    
     NC NC 2c ↑c
      |
29 | 4, 26, 28 | syl2anc 642 |
. 2
  NC Spac
  
↑c 0c NC 2c ↑c 
Clos1          NC NC
2c
↑c       |
30 | 29, 3 | eleqtrrd 2430 |
1
  NC Spac
  
↑c 0c NC 2c ↑c 
Spac     |