New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enadjlem1 | Unicode version |
Description: Lemma for enadj 6061. Calculate equality of differences. (Contributed by SF, 25-Feb-2015.) |
Ref | Expression |
---|---|
enadjlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3758 | . . . . . . . . 9 | |
2 | 1 | necon3ai 2557 | . . . . . . . 8 |
3 | 2 | ad2antll 709 | . . . . . . 7 |
4 | ssun1 3427 | . . . . . . . . . . 11 | |
5 | 4 | sseli 3270 | . . . . . . . . . 10 |
6 | 5 | ad2antrl 708 | . . . . . . . . 9 |
7 | simpl1 958 | . . . . . . . . 9 | |
8 | 6, 7 | eleqtrd 2429 | . . . . . . . 8 |
9 | elun 3221 | . . . . . . . 8 | |
10 | 8, 9 | sylib 188 | . . . . . . 7 |
11 | orel2 372 | . . . . . . 7 | |
12 | 3, 10, 11 | sylc 56 | . . . . . 6 |
13 | 12 | ex 423 | . . . . 5 |
14 | simp2l 981 | . . . . . . . 8 | |
15 | eleq1 2413 | . . . . . . . . 9 | |
16 | 15 | notbid 285 | . . . . . . . 8 |
17 | 14, 16 | syl5ibrcom 213 | . . . . . . 7 |
18 | 17 | necon2ad 2565 | . . . . . 6 |
19 | 18 | adantrd 454 | . . . . 5 |
20 | 13, 19 | jcad 519 | . . . 4 |
21 | eldifsn 3840 | . . . 4 | |
22 | eldifsn 3840 | . . . 4 | |
23 | 20, 21, 22 | 3imtr4g 261 | . . 3 |
24 | 23 | ssrdv 3279 | . 2 |
25 | elsni 3758 | . . . . . . . . 9 | |
26 | 25 | necon3ai 2557 | . . . . . . . 8 |
27 | 26 | ad2antll 709 | . . . . . . 7 |
28 | ssun1 3427 | . . . . . . . . . . 11 | |
29 | 28 | sseli 3270 | . . . . . . . . . 10 |
30 | 29 | ad2antrl 708 | . . . . . . . . 9 |
31 | simpl1 958 | . . . . . . . . 9 | |
32 | 30, 31 | eleqtrrd 2430 | . . . . . . . 8 |
33 | elun 3221 | . . . . . . . 8 | |
34 | 32, 33 | sylib 188 | . . . . . . 7 |
35 | orel2 372 | . . . . . . 7 | |
36 | 27, 34, 35 | sylc 56 | . . . . . 6 |
37 | 36 | ex 423 | . . . . 5 |
38 | simp2r 982 | . . . . . . . 8 | |
39 | eleq1 2413 | . . . . . . . . 9 | |
40 | 39 | notbid 285 | . . . . . . . 8 |
41 | 38, 40 | syl5ibrcom 213 | . . . . . . 7 |
42 | 41 | necon2ad 2565 | . . . . . 6 |
43 | 42 | adantrd 454 | . . . . 5 |
44 | 37, 43 | jcad 519 | . . . 4 |
45 | 44, 22, 21 | 3imtr4g 261 | . . 3 |
46 | 45 | ssrdv 3279 | . 2 |
47 | 24, 46 | eqssd 3290 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wa 358 w3a 934 wceq 1642 wcel 1710 wne 2517 cdif 3207 cun 3208 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-sn 3742 |
This theorem is referenced by: enadj 6061 |
Copyright terms: Public domain | W3C validator |