| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > enadjlem1 | Unicode version | ||
| Description: Lemma for enadj 6061. Calculate equality of differences. (Contributed by SF, 25-Feb-2015.) |
| Ref | Expression |
|---|---|
| enadjlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 3758 |
. . . . . . . . 9
| |
| 2 | 1 | necon3ai 2557 |
. . . . . . . 8
|
| 3 | 2 | ad2antll 709 |
. . . . . . 7
|
| 4 | ssun1 3427 |
. . . . . . . . . . 11
| |
| 5 | 4 | sseli 3270 |
. . . . . . . . . 10
|
| 6 | 5 | ad2antrl 708 |
. . . . . . . . 9
|
| 7 | simpl1 958 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eleqtrd 2429 |
. . . . . . . 8
|
| 9 | elun 3221 |
. . . . . . . 8
| |
| 10 | 8, 9 | sylib 188 |
. . . . . . 7
|
| 11 | orel2 372 |
. . . . . . 7
| |
| 12 | 3, 10, 11 | sylc 56 |
. . . . . 6
|
| 13 | 12 | ex 423 |
. . . . 5
|
| 14 | simp2l 981 |
. . . . . . . 8
| |
| 15 | eleq1 2413 |
. . . . . . . . 9
| |
| 16 | 15 | notbid 285 |
. . . . . . . 8
|
| 17 | 14, 16 | syl5ibrcom 213 |
. . . . . . 7
|
| 18 | 17 | necon2ad 2565 |
. . . . . 6
|
| 19 | 18 | adantrd 454 |
. . . . 5
|
| 20 | 13, 19 | jcad 519 |
. . . 4
|
| 21 | eldifsn 3840 |
. . . 4
| |
| 22 | eldifsn 3840 |
. . . 4
| |
| 23 | 20, 21, 22 | 3imtr4g 261 |
. . 3
|
| 24 | 23 | ssrdv 3279 |
. 2
|
| 25 | elsni 3758 |
. . . . . . . . 9
| |
| 26 | 25 | necon3ai 2557 |
. . . . . . . 8
|
| 27 | 26 | ad2antll 709 |
. . . . . . 7
|
| 28 | ssun1 3427 |
. . . . . . . . . . 11
| |
| 29 | 28 | sseli 3270 |
. . . . . . . . . 10
|
| 30 | 29 | ad2antrl 708 |
. . . . . . . . 9
|
| 31 | simpl1 958 |
. . . . . . . . 9
| |
| 32 | 30, 31 | eleqtrrd 2430 |
. . . . . . . 8
|
| 33 | elun 3221 |
. . . . . . . 8
| |
| 34 | 32, 33 | sylib 188 |
. . . . . . 7
|
| 35 | orel2 372 |
. . . . . . 7
| |
| 36 | 27, 34, 35 | sylc 56 |
. . . . . 6
|
| 37 | 36 | ex 423 |
. . . . 5
|
| 38 | simp2r 982 |
. . . . . . . 8
| |
| 39 | eleq1 2413 |
. . . . . . . . 9
| |
| 40 | 39 | notbid 285 |
. . . . . . . 8
|
| 41 | 38, 40 | syl5ibrcom 213 |
. . . . . . 7
|
| 42 | 41 | necon2ad 2565 |
. . . . . 6
|
| 43 | 42 | adantrd 454 |
. . . . 5
|
| 44 | 37, 43 | jcad 519 |
. . . 4
|
| 45 | 44, 22, 21 | 3imtr4g 261 |
. . 3
|
| 46 | 45 | ssrdv 3279 |
. 2
|
| 47 | 24, 46 | eqssd 3290 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-sn 3742 |
| This theorem is referenced by: enadj 6061 |
| Copyright terms: Public domain | W3C validator |